These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 28033533)
1. Fatigue responses of the human cervical spine intervertebral discs. Yoganandan N; Umale S; Stemper B; Snyder B J Mech Behav Biomed Mater; 2017 May; 69():30-38. PubMed ID: 28033533 [TBL] [Abstract][Full Text] [Related]
2. Finite element analysis of the cervical spine: a material property sensitivity study. Kumaresan S; Yoganandan N; Pintar FA Clin Biomech (Bristol); 1999 Jan; 14(1):41-53. PubMed ID: 10619089 [TBL] [Abstract][Full Text] [Related]
3. Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads. Kumaresan S; Yoganandan N; Pintar FA; Maiman DJ Med Eng Phys; 1999 Dec; 21(10):689-700. PubMed ID: 10717549 [TBL] [Abstract][Full Text] [Related]
4. Recent advances in analytical modeling of lumbar disc degeneration. Natarajan RN; Williams JR; Andersson GB Spine (Phila Pa 1976); 2004 Dec; 29(23):2733-41. PubMed ID: 15564922 [TBL] [Abstract][Full Text] [Related]
5. Posterior facet load changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: a poroelastic C3-T1 finite element model study. Hussain M; Natarajan RN; Chaudhary G; An HS; Andersson GB J Spinal Disord Tech; 2012 Jun; 25(4):218-25. PubMed ID: 22652989 [TBL] [Abstract][Full Text] [Related]
7. Viscoelastic finite element analysis of the cervical intervertebral discs in conjunction with a multi-body dynamic model of the human head and neck. Esat V; Acar M Proc Inst Mech Eng H; 2009 Feb; 223(2):249-62. PubMed ID: 19278200 [TBL] [Abstract][Full Text] [Related]
8. Biexponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading. Solomonow M; He Zhou B; Baratta RV; Lu Y; Zhu M; Harris M Clin Biomech (Bristol); 2000 Mar; 15(3):167-75. PubMed ID: 10656978 [TBL] [Abstract][Full Text] [Related]
9. Influence of morphological variations on cervical spine segmental responses from inertial loading. John JD; Yoganandan N; Arun MWJ; Saravana Kumar G Traffic Inj Prev; 2018 Feb; 19(sup1):S29-S36. PubMed ID: 29584503 [TBL] [Abstract][Full Text] [Related]
10. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676 [TBL] [Abstract][Full Text] [Related]
11. Effect of the transverse ligament rupture on the biomechanics of the cervical spine under a compressive loading. Mesfar W; Moglo K Clin Biomech (Bristol); 2013 Oct; 28(8):846-52. PubMed ID: 23972374 [TBL] [Abstract][Full Text] [Related]
12. Load-bearing and stress analysis of the human spine under a novel wrapping compression loading. Shirazi-Adl A; Parnianpour M Clin Biomech (Bristol); 2000 Dec; 15(10):718-25. PubMed ID: 11050353 [TBL] [Abstract][Full Text] [Related]
13. Injury mechanisms of the ligamentous cervical C2-C3 Functional Spinal Unit to complex loading modes: Finite Element study. Mustafy T; Moglo K; Adeeb S; El-Rich M J Mech Behav Biomed Mater; 2016 Jan; 53():384-396. PubMed ID: 26409229 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical responses due to discitis infection of a juvenile thoracolumbar spine using finite element modeling. Davidson Jebaseelan D; Jebaraj C; Yoganandan N; Rajasekaran S; Yerramshetty J Med Eng Phys; 2014 Jul; 36(7):938-43. PubMed ID: 24703867 [TBL] [Abstract][Full Text] [Related]
15. Models that incorporate spinal structures predict better wear performance of cervical artificial discs. Bhattacharya S; Goel VK; Liu X; Kiapour A; Serhan HA Spine J; 2011 Aug; 11(8):766-76. PubMed ID: 21802999 [TBL] [Abstract][Full Text] [Related]
16. Fatigue damage prediction in the annulus of cervical spine intervertebral discs using finite element analysis. Subramani AV; Whitley PE; Garimella HT; Kraft RH Comput Methods Biomech Biomed Engin; 2020 Aug; 23(11):773-784. PubMed ID: 32401044 [TBL] [Abstract][Full Text] [Related]
17. Modeling changes in intervertebral disc mechanics with degeneration. Natarajan RN; Williams JR; Andersson GB J Bone Joint Surg Am; 2006 Apr; 88 Suppl 2():36-40. PubMed ID: 16595441 [TBL] [Abstract][Full Text] [Related]
18. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846 [TBL] [Abstract][Full Text] [Related]
19. Damage accumulation location under cyclic loading in the lumbar disc shifts from inner annulus lamellae to peripheral annulus with increasing disc degeneration. Qasim M; Natarajan RN; An HS; Andersson GB J Biomech; 2014 Jan; 47(1):24-31. PubMed ID: 24231247 [TBL] [Abstract][Full Text] [Related]
20. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study. Fagan MJ; Julian S; Siddall DJ; Mohsen AM Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]