These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28033574)

  • 1. Evaluation of a hollow fiber supported liquid membrane device as a chemical surrogate for the measurements of zinc (II) bioavailability using two microalgae strains as biological references.
    Rodríguez-Morales EA; Rodríguez de San Miguel E; de Gyves J
    Chemosphere; 2017 Mar; 171():435-445. PubMed ID: 28033574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the measurement of Cu(II) bioavailability in complex aqueous media using a hollow-fiber supported liquid membrane device (HFSLM) and two microalgae species (Pseudokirchneriella subcapitata and Scenedesmus acutus).
    Rodríguez-Morales EA; Rodríguez de San Miguel E; de Gyves J
    Environ Pollut; 2015 Nov; 206():712-9. PubMed ID: 26431807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyzing the capacity of the Daphnia magna and Pseudokirchneriella subcapitata bioavailability models to predict chronic zinc toxicity at high pH and low calcium concentrations and formulation of a generalized bioavailability model for D. magna.
    Van Regenmortel T; Berteloot O; Janssen CR; De Schamphelaere KAC
    Environ Toxicol Chem; 2017 Oct; 36(10):2781-2798. PubMed ID: 28452073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of lead (Pb) to freshwater green algae: development and validation of a bioavailability model and inter-species sensitivity comparison.
    De Schamphelaere KA; Nys C; Janssen CR
    Aquat Toxicol; 2014 Oct; 155():348-59. PubMed ID: 25089923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of benzo(a)pyrene by two freshwater microalgae Selenastrum capricornutum and Scenedesmus acutus: a comparative study useful for bioremediation.
    García de Llasera MP; Olmos-Espejel Jde J; Díaz-Flores G; Montaño-Montiel A
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3365-75. PubMed ID: 26490911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations.
    Heijerick DG; De Schamphelaere KA; Janssen CR
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Sep; 133(1-2):207-18. PubMed ID: 12356528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioavailability models for predicting copper toxicity to freshwater green microalgae as a function of water chemistry.
    De Schamphelaere KA; Janssen CR
    Environ Sci Technol; 2006 Jul; 40(14):4514-22. PubMed ID: 16903294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition between alga (Pseudokirchneriella subcapitata), humic substances and EDTA for Cd and Zn control in the algal assay procedure (AAP) medium.
    Guéguen C; Koukal B; Dominik J; Pardos M
    Chemosphere; 2003 Dec; 53(8):927-34. PubMed ID: 14505715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of phosphorus on the toxicity of zinc to the microalga Raphidocelis subcapitata.
    Rodgher S; Contador TM; Rocha GS; Espindola ELG
    An Acad Bras Cienc; 2020; 92(suppl 2):e20190050. PubMed ID: 33174910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixtures of Cu, Ni, and Zn act mostly noninteractively on Pseudokirchneriella subcapitata growth in natural waters.
    Van Regenmortel T; De Schamphelaere KAC
    Environ Toxicol Chem; 2018 Feb; 37(2):587-598. PubMed ID: 28986992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of chronic mixture toxicity of nickel-zinc-copper and nickel-zinc-copper-cadmium mixtures between Ceriodaphnia dubia and Pseudokirchneriella subcapitata.
    Nys C; Van Regenmortel T; Janssen CR; Blust R; Smolders E; De Schamphelaere KA
    Environ Toxicol Chem; 2017 Apr; 36(4):1056-1066. PubMed ID: 27669674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH.
    Abinandan S; Subashchandrabose SR; Panneerselvan L; Venkateswarlu K; Megharaj M
    Bioresour Technol; 2019 Apr; 278():9-16. PubMed ID: 30669030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal and Biodegradation of 17β-Estradiol and Diethylstilbestrol by the Freshwater Microalgae Raphidocelis subcapitata.
    Liu W; Chen Q; He N; Sun K; Sun D; Wu X; Duan S
    Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29510598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a biotic ligand model for freshwater green algae: surface-bound and internal copper are better predictors of toxicity than free Cu2+-ion activity when pH is varied.
    De Schamphelaere KA; Stauber JL; Wilde KL; Markich SJ; Brown PL; Franklin NM; Creighton NM; Janssen CR
    Environ Sci Technol; 2005 Apr; 39(7):2067-72. PubMed ID: 15871238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga.
    Worms IA; Adenmatten D; Miéville P; Traber J; Slaveykova VI
    Chemosphere; 2015 Nov; 138():908-15. PubMed ID: 25563161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate, toxicity and bioconcentration of cadmium on Pseudokirchneriella subcapitata and Lemna minor in mid-term single tests.
    Clément B; Lamonica D
    Ecotoxicology; 2018 Mar; 27(2):132-143. PubMed ID: 29170931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labile synthetic cadmium complexes are not bioavailable to Pseudokirchneriella subcapitata in resin buffered solutions.
    Verheyen L; Merckx R; Smolders E
    Aquat Toxicol; 2012 Nov; 124-125():66-71. PubMed ID: 22903064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata.
    Koukal B; Guéguen C; Pardos M; Dominik J
    Chemosphere; 2003 Dec; 53(8):953-61. PubMed ID: 14505718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of humic acid on algal uptake and toxicity of ionic silver.
    Chen Z; Porcher C; Campbell PG; Fortin C
    Environ Sci Technol; 2013 Aug; 47(15):8835-42. PubMed ID: 23789878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.
    Boguta P; Sokołowska Z
    PLoS One; 2016; 11(4):e0153626. PubMed ID: 27077915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.