BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28033671)

  • 1. Visual experience dependent regulation of neuronal structure and function by histone deacetylase 1 in developing Xenopus tectum in vivo.
    Ruan H; Gao J; Qi X; Tao Y; Guo X; Guo Z; Zheng L; Song Y; Liao Y; Shen W
    Dev Neurobiol; 2017 Sep; 77(8):947-962. PubMed ID: 28033671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HDAC1 regulates the proliferation of radial glial cells in the developing Xenopus tectum.
    Tao Y; Ruan H; Guo X; Li L; Shen W
    PLoS One; 2015; 10(3):e0120118. PubMed ID: 25789466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition to excitation ratio regulates visual system responses and behavior in vivo.
    Shen W; McKeown CR; Demas JA; Cline HT
    J Neurophysiol; 2011 Nov; 106(5):2285-302. PubMed ID: 21795628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased apoptosis and abnormal visual behavior by histone modifications with exposure to para-xylene in developing Xenopus.
    Gao J; Ruan H; Qi X; Guo X; Zheng J; Liu C; Fang Y; Huang M; Xu M; Shen W
    Neuroscience; 2016 Sep; 331():177-85. PubMed ID: 27343828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner.
    Gambrill AC; Faulkner RL; McKeown CR; Cline HT
    J Neurophysiol; 2019 Jan; 121(1):306-320. PubMed ID: 30517041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual Experience Facilitates BDNF-Dependent Adaptive Recruitment of New Neurons in the Postembryonic Optic Tectum.
    Hall ZJ; Tropepe V
    J Neurosci; 2018 Feb; 38(8):2000-2014. PubMed ID: 29363581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitatory synaptic dysfunction cell-autonomously decreases inhibitory inputs and disrupts structural and functional plasticity.
    He HY; Shen W; Zheng L; Guo X; Cline HT
    Nat Commun; 2018 Jul; 9(1):2893. PubMed ID: 30042473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Amyloid triggers aberrant over-scaling of homeostatic synaptic plasticity.
    Gilbert J; Shu S; Yang X; Lu Y; Zhu LQ; Man HY
    Acta Neuropathol Commun; 2016 Dec; 4(1):131. PubMed ID: 27955702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BDNF increases synapse density in dendrites of developing tectal neurons in vivo.
    Sanchez AL; Matthews BJ; Meynard MM; Hu B; Javed S; Cohen Cory S
    Development; 2006 Jul; 133(13):2477-86. PubMed ID: 16728478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of maternal n-3 polyunsaturated fatty acid deficiency on dendritic arbor morphology and connectivity of developing Xenopus laevis central neurons in vivo.
    Igarashi M; Santos RA; Cohen-Cory S
    J Neurosci; 2015 Apr; 35(15):6079-92. PubMed ID: 25878281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurogenesis is required for behavioral recovery after injury in the visual system of Xenopus laevis.
    McKeown CR; Sharma P; Sharipov HE; Shen W; Cline HT
    J Comp Neurol; 2013 Jul; 521(10):2262-78. PubMed ID: 23238877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HDAC1 negatively regulates Bdnf and Pvalb required for parvalbumin interneuron maturation in an experience-dependent manner.
    Koh DX; Sng JC
    J Neurochem; 2016 Nov; 139(3):369-380. PubMed ID: 27534825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experience-Dependent Bimodal Plasticity of Inhibitory Neurons in Early Development.
    He HY; Shen W; Hiramoto M; Cline HT
    Neuron; 2016 Jun; 90(6):1203-1214. PubMed ID: 27238867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. d-Glucuronolactone attenuates para-xylene-induced defects in neuronal development and plasticity in Xenopus tectum in vivo.
    Liao Y; Luo Y; Ding N; Gao J; Wang X; Shen W
    Toxicology; 2020 Jan; 430():152341. PubMed ID: 31811891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory modality-specific homeostatic plasticity in the developing optic tectum.
    Deeg KE; Aizenman CD
    Nat Neurosci; 2011 May; 14(5):548-50. PubMed ID: 21441922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles.
    Bestman JE; Lee-Osbourne J; Cline HT
    J Comp Neurol; 2012 Feb; 520(2):401-33. PubMed ID: 22113462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits.
    Truszkowski TL; James EJ; Hasan M; Wishard TJ; Liu Z; Pratt KG; Cline HT; Aizenman CD
    Neural Dev; 2016 Aug; 11(1):14. PubMed ID: 27503008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription suppression is mediated by the HDAC1-Sin3 complex in Xenopus nucleoplasmic extract.
    Quaas CE; Lin B; Long DT
    J Biol Chem; 2022 Nov; 298(11):102578. PubMed ID: 36220390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular Localization of Class I Histone Deacetylases in the Developing Xenopus tectum.
    Guo X; Ruan H; Li X; Qin L; Tao Y; Qi X; Gao J; Gan L; Duan S; Shen W
    Front Cell Neurosci; 2015; 9():510. PubMed ID: 26793062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.