BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28033684)

  • 1. Cellular reactions and compensatory tissue re-organization during spontaneous recovery after spinal cord injury in neonatal mice.
    Chawla RS; Züchner M; Mastrangelopoulou M; Lambert FM; Glover JC; Boulland JL
    Dev Neurobiol; 2017 Sep; 77(8):928-946. PubMed ID: 28033684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury.
    Züchner M; Kondratskaya E; Sylte CB; Glover JC; Boulland JL
    J Physiol; 2018 Jan; 596(2):281-303. PubMed ID: 29086918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration.
    Boulland JL; Lambert FM; Züchner M; Ström S; Glover JC
    PLoS One; 2013; 8(8):e71701. PubMed ID: 23990976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of the Fractalkine Receptor, CX3CR1, Improves Endogenous Repair, Axon Sprouting, and Synaptogenesis after Spinal Cord Injury in Mice.
    Freria CM; Hall JC; Wei P; Guan Z; McTigue DM; Popovich PG
    J Neurosci; 2017 Mar; 37(13):3568-3587. PubMed ID: 28264978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tegaserod, a small compound mimetic of polysialic acid, promotes functional recovery after spinal cord injury in mice.
    Pan HC; Shen YQ; Loers G; Jakovcevski I; Schachner M
    Neuroscience; 2014 Sep; 277():356-66. PubMed ID: 25014876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-dose fractionated irradiation promotes axonal regeneration beyond reactive gliosis and facilitates locomotor function recovery after spinal cord injury in beagle dogs.
    Zhang Q; Xiong Y; Zhu B; Zhu B; Tian D; Wang W
    Eur J Neurosci; 2017 Nov; 46(9):2507-2518. PubMed ID: 28921700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensatory projections of primary sensory fibers in lumbar spinal cord after neonatal thoracic spinal transection in rats.
    Takiguchi M; Atobe Y; Kadota T; Funakoshi K
    Neuroscience; 2015 Sep; 304():349-54. PubMed ID: 26208841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Lesioned Spinal Cord Is a "New" Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey.
    Parker D
    Front Neural Circuits; 2017; 11():84. PubMed ID: 29163065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury.
    Marino P; Norreel JC; Schachner M; Rougon G; Amoureux MC
    Exp Neurol; 2009 Sep; 219(1):163-74. PubMed ID: 19445935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic Interrogation of Functional Synapse Formation by Corticospinal Tract Axons in the Injured Spinal Cord.
    Jayaprakash N; Wang Z; Hoeynck B; Krueger N; Kramer A; Balle E; Wheeler DS; Wheeler RA; Blackmore MG
    J Neurosci; 2016 May; 36(21):5877-90. PubMed ID: 27225775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles.
    Fabbiani G; Rehermann MI; Aldecosea C; Trujillo-Cenóz O; Russo RE
    Front Neural Circuits; 2018; 12():20. PubMed ID: 29593503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lanthionine ketimine ester promotes locomotor recovery after spinal cord injury by reducing neuroinflammation and promoting axon growth.
    Kotaka K; Nagai J; Hensley K; Ohshima T
    Biochem Biophys Res Commun; 2017 Jan; 483(1):759-764. PubMed ID: 27965088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal Motor Circuit Synaptic Plasticity after Peripheral Nerve Injury Depends on Microglia Activation and a CCR2 Mechanism.
    Rotterman TM; Akhter ET; Lane AR; MacPherson KP; García VV; Tansey MG; Alvarez FJ
    J Neurosci; 2019 May; 39(18):3412-3433. PubMed ID: 30833511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury.
    Swieck K; Conta-Steencken A; Middleton FA; Siebert JR; Osterhout DJ; Stelzner DJ
    BMC Neurosci; 2019 Mar; 20(1):10. PubMed ID: 30885135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.
    Chen J; Wu J; Apostolova I; Skup M; Irintchev A; Kügler S; Schachner M
    Brain; 2007 Apr; 130(Pt 4):954-69. PubMed ID: 17438016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved recovery after spinal cord injury in neuronal nitric oxide synthase-deficient mice but not in TNF-alpha-deficient mice.
    Farooque M; Isaksson J; Olsson Y
    J Neurotrauma; 2001 Jan; 18(1):105-14. PubMed ID: 11200245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of early locomotor network dysfunction following a focal lesion in an in vitro model of spinal injury.
    Taccola G; Mladinic M; Nistri A
    Eur J Neurosci; 2010 Jan; 31(1):60-78. PubMed ID: 20092556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serotonergic projections to lumbar levels and its plasticity following spinal cord injury.
    Xia Y; Chen D; Xia H; Liao Z; Tang W; Yan Y
    Neurosci Lett; 2017 May; 649():70-77. PubMed ID: 28396282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor.
    Wang Y; Gao Z; Zhang Y; Feng SQ; Liu Y; Shields LBE; Zhao YZ; Zhu Q; Gozal D; Shields CB; Cai J
    Mol Neurobiol; 2016 Jul; 53(5):3448-3461. PubMed ID: 26084439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.