BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28033684)

  • 21. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury.
    Floriddia EM; Rathore KI; Tedeschi A; Quadrato G; Wuttke A; Lueckmann JM; Kigerl KA; Popovich PG; Di Giovanni S
    J Neurosci; 2012 Oct; 32(40):13956-70. PubMed ID: 23035104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of the serotonergic system in locomotor recovery after spinal cord injury.
    Ghosh M; Pearse DD
    Front Neural Circuits; 2014; 8():151. PubMed ID: 25709569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Locomotor recovery after spinal cord lesions in the lamprey is associated with functional and ultrastructural changes below lesion sites.
    Cooke RM; Parker D
    J Neurotrauma; 2009 Apr; 26(4):597-612. PubMed ID: 19271969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-term gliosis and molecular changes in the cervical spinal cord of the rhesus monkey after traumatic brain injury.
    Nagamoto-Combs K; Morecraft RJ; Darling WG; Combs CK
    J Neurotrauma; 2010 Mar; 27(3):565-85. PubMed ID: 20030560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Semaphorin4D promotes axon regrowth and swimming ability during recovery following zebrafish spinal cord injury.
    Peng SX; Yao L; Cui C; Zhao HD; Liu CJ; Li YH; Wang LF; Huang SB; Shen YQ
    Neuroscience; 2017 May; 351():36-46. PubMed ID: 28347780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in functional properties and 5-HT modulation above and below a spinal transection in lamprey.
    Becker MI; Parker D
    Front Neural Circuits; 2014; 8():148. PubMed ID: 25653594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lack of axonal sprouting of spared propriospinal fibers caudal to spinal contusion injury is attributed to chronic axonopathy.
    Steencken AC; Siebert JR; Stelzner DJ
    J Neurotrauma; 2009 Dec; 26(12):2279-97. PubMed ID: 19645528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Longitudinal Magnetic Resonance Imaging Analysis and Histological Characterization after Spinal Cord Injury in Two Mouse Strains with Different Functional Recovery: Gliosis as a Key Factor.
    Noristani HN; Saint-Martin GP; Cardoso M; Sidiboulenouar R; Catteau M; Coillot C; Goze-Bac C; Perrin FE
    J Neurotrauma; 2018 Dec; 35(24):2924-2940. PubMed ID: 29877129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuroprotective effect of Scutellaria baicalensis on spinal cord injury in rats.
    Yune TY; Lee JY; Cui CM; Kim HC; Oh TH
    J Neurochem; 2009 Aug; 110(4):1276-87. PubMed ID: 19519665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. White matter preservation after spinal cord injury in ICAM-1/P-selectin-deficient mice.
    Farooque M; Isaksson J; Olsson Y
    Acta Neuropathol; 2001 Aug; 102(2):132-40. PubMed ID: 11563627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early graft of neural precursors in spinal cord compression reduces glial cyst and improves function.
    Boido M; Garbossa D; Vercelli A
    J Neurosurg Spine; 2011 Jul; 15(1):97-106. PubMed ID: 21456892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complement C5a is detrimental to histological and functional locomotor recovery after spinal cord injury in mice.
    Li L; Xiong ZY; Qian ZM; Zhao TZ; Feng H; Hu S; Hu R; Ke Y; Lin J
    Neurobiol Dis; 2014 Jun; 66():74-82. PubMed ID: 24607885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anatomical recovery of the GABAergic system after a complete spinal cord injury in lampreys.
    Romaus-Sanjurjo D; Valle-Maroto SM; Barreiro-Iglesias A; Fernández-López B; Rodicio MC
    Neuropharmacology; 2018 Mar; 131():389-402. PubMed ID: 29317225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular and cellular changes in the lumbar spinal cord following thoracic injury: regulation by treadmill locomotor training.
    Shin HY; Kim H; Kwon MJ; Hwang DH; Lee K; Kim BG
    PLoS One; 2014; 9(2):e88215. PubMed ID: 24520355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chronic alterations in the cellular composition of spinal cord white matter following contusion injury.
    Rosenberg LJ; Zai LJ; Wrathall JR
    Glia; 2005 Jan; 49(1):107-20. PubMed ID: 15390101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Type I interferon inhibits astrocytic gliosis and promotes functional recovery after spinal cord injury by deactivation of the MEK/ERK pathway.
    Ito M; Natsume A; Takeuchi H; Shimato S; Ohno M; Wakabayashi T; Yoshida J
    J Neurotrauma; 2009 Jan; 26(1):41-53. PubMed ID: 19196180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Serotonergic fiber sprouting to external anal sphincter motoneurons after spinal cord contusion.
    Holmes GM; Van Meter MJ; Beattie MS; Bresnahan JC
    Exp Neurol; 2005 May; 193(1):29-42. PubMed ID: 15817262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of early surgical decompression on functional and histological outcomes after severe experimental thoracic spinal cord injury.
    Jalan D; Saini N; Zaidi M; Pallottie A; Elkabes S; Heary RF
    J Neurosurg Spine; 2017 Jan; 26(1):62-75. PubMed ID: 27636866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats.
    Yu S; Yao S; Wen Y; Wang Y; Wang H; Xu Q
    Sci Rep; 2016 Sep; 6():33428. PubMed ID: 27641997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.