BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28034013)

  • 1. Crystal structure of Staphylococcus aureus Zn-glyoxalase I: new subfamily of glyoxalase I family.
    Chirgadze YN; Boshkova EA; Battaile KP; Mendes VG; Lam R; Chan TSY; Romanov V; Pai EF; Chirgadze NY
    J Biomol Struct Dyn; 2018 Feb; 36(2):376-386. PubMed ID: 28034013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of a homodimeric Pseudomonas glyoxalase I enzyme reveals asymmetric metallation commensurate with half-of-sites activity.
    Bythell-Douglas R; Suttisansanee U; Flematti GR; Challenor M; Lee M; Panjikar S; Honek JF; Bond CS
    Chemistry; 2015 Jan; 21(2):541-4. PubMed ID: 25411134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the CN-hydrolase SA0302 from the pathogenic bacterium Staphylococcus aureus belonging to the Nit and NitFhit Branch of the nitrilase superfamily.
    Gordon RD; Qiu W; Romanov V; Lam K; Soloveychik M; Benetteraj D; Battaile KP; Chirgadze YN; Pai EF; Chirgadze NY
    J Biomol Struct Dyn; 2013 Oct; 31(10):1057-65. PubMed ID: 23607706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping.
    Cameron AD; Olin B; Ridderström M; Mannervik B; Jones TA
    EMBO J; 1997 Jun; 16(12):3386-95. PubMed ID: 9218781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel approach for structural identification of protein family: glyoxalase I.
    Kargatov AM; Boshkova EA; Chirgadze YN
    J Biomol Struct Dyn; 2018 Aug; 36(10):2699-2712. PubMed ID: 28805540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glyoxalase I--structure, function and a critical role in the enzymatic defence against glycation.
    Thornalley PJ
    Biochem Soc Trans; 2003 Dec; 31(Pt 6):1343-8. PubMed ID: 14641060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural variation in bacterial glyoxalase I enzymes: investigation of the metalloenzyme glyoxalase I from Clostridium acetobutylicum.
    Suttisansanee U; Lau K; Lagishetty S; Rao KN; Swaminathan S; Sauder JM; Burley SK; Honek JF
    J Biol Chem; 2011 Nov; 286(44):38367-38374. PubMed ID: 21914803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic mechanism of glyoxalase I: a theoretical study.
    Himo F; Siegbahn PE
    J Am Chem Soc; 2001 Oct; 123(42):10280-9. PubMed ID: 11603978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the novel monomeric glyoxalase I from Zea mays.
    Turra GL; Agostini RB; Fauguel CM; Presello DA; Andreo CS; González JM; Campos-Bermudez VA
    Acta Crystallogr D Biol Crystallogr; 2015 Oct; 71(Pt 10):2009-20. PubMed ID: 26457425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue.
    Cameron AD; Ridderström M; Olin B; Kavarana MJ; Creighton DJ; Mannervik B
    Biochemistry; 1999 Oct; 38(41):13480-90. PubMed ID: 10521255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of SAV1646 from Staphylococcus aureus belonging to a new `ribosome-associated' subfamily of bacterial proteins.
    Chirgadze YN; Clarke TE; Romanov V; Kisselman G; Wu-Brown J; Soloveychik M; Chan TS; Gordon RD; Battaile KP; Pai EF; Chirgadze NY
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):332-7. PubMed ID: 25664743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional studies of SAV0551 from
    Kim HJ; Lee KY; Kwon AR; Lee BJ
    Biosci Rep; 2017 Dec; 37(6):. PubMed ID: 29046369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active monomeric and dimeric forms of Pseudomonas putida glyoxalase I: evidence for 3D domain swapping.
    Saint-Jean AP; Phillips KR; Creighton DJ; Stone MJ
    Biochemistry; 1998 Jul; 37(29):10345-53. PubMed ID: 9671502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast glyoxalase I is a monomeric enzyme with two active sites.
    Frickel EM; Jemth P; Widersten M; Mannervik B
    J Biol Chem; 2001 Jan; 276(3):1845-9. PubMed ID: 11050082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue.
    Cameron AD; Ridderström M; Olin B; Mannervik B
    Structure; 1999 Sep; 7(9):1067-78. PubMed ID: 10508780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the structure of Escherichia coli glyoxalase I suggests a structural basis for differential metal activation.
    He MM; Clugston SL; Honek JF; Matthews BW
    Biochemistry; 2000 Aug; 39(30):8719-27. PubMed ID: 10913283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and biochemical studies on Vibrio cholerae Hsp31 reveals a novel dimeric form and Glutathione-independent Glyoxalase activity.
    Das S; Roy Chowdhury S; Dey S; Sen U
    PLoS One; 2017; 12(2):e0172629. PubMed ID: 28235098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The basis for non-canonical ROK family function in the
    Coombes D; Davies JS; Newton-Vesty MC; Horne CR; Setty TG; Subramanian R; Moir JWB; Friemann R; Panjikar S; Griffin MDW; North RA; Dobson RCJ
    J Biol Chem; 2020 Mar; 295(10):3301-3315. PubMed ID: 31949045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glyoxalase I of the malarial parasite Plasmodium falciparum: evidence for subunit fusion.
    Iozef R; Rahlfs S; Chang T; Schirmer H; Becker K
    FEBS Lett; 2003 Nov; 554(3):284-8. PubMed ID: 14623080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I.
    Kaur C; Vishnoi A; Ariyadasa TU; Bhattacharya A; Singla-Pareek SL; Sopory SK
    Sci Rep; 2013 Nov; 3():3076. PubMed ID: 24220130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.