BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28034511)

  • 1. Low-level atmospheric radioactivity measurement using a NaI(Tl) spectrometer during aerosol sampling.
    Hýža M; Rulík P
    Appl Radiat Isot; 2017 Aug; 126():225-227. PubMed ID: 28034511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact radioactive aerosol monitoring device for early warning networks.
    Glavič-Cindro D; Brodnik D; Petrovič T; Vencelj M; Ponikvar D; Bell SJ; Keightley L; Woods S
    Appl Radiat Isot; 2017 Aug; 126():219-224. PubMed ID: 28038839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an autonomous station for measurements of artificial gamma activity in surface water bodies.
    Fejgl M; Hýža M
    J Environ Radioact; 2019 Aug; 204():42-48. PubMed ID: 30965215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity measurement of gamma-ray emitters in aerosol filters exposed in Lithuania, in March-April 2011.
    Gudelis A; Gorina I; Nedveckaitė T; Kovař P; Dryak P; Suran J
    Appl Radiat Isot; 2013 Nov; 81():362-5. PubMed ID: 23541789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IN-SITU GAMMA-RAY SPECTROMETRY FOR RADIOACTIVITY ANALYSIS OF SOIL USING NaI(Tl) AND LaBr3(Ce) DETECTORS.
    Lee JH; Byun JI
    Radiat Prot Dosimetry; 2019 Dec; 187(3):300-309. PubMed ID: 31268526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of NaI(Tl) detector for measurement of natural radionuclides and (137)Cs in environmental samples: new approach by decomposition of measured spectrum.
    Muminov IT; Muhamedov AK; Osmanov BS; Safarov AA; Safarov AN
    J Environ Radioact; 2005; 84(3):321-31. PubMed ID: 16009470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of an early warning system for airborne radionuclides.
    Kastlander J; Söderström C
    Appl Radiat Isot; 2017 Aug; 126():228-231. PubMed ID: 27955839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrum-dose conversion operator of NaI(Tl) and CsI(Tl) scintillation detectors for air dose rate measurement in contaminated environments.
    Tsuda S; Saito K
    J Environ Radioact; 2017 Jan; 166(Pt 3):419-426. PubMed ID: 26952947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a new comprehensive continuous monitoring system for environmental radioactive aerosol.
    Xu H; Huang Z; Wang G; Mu C; Yin Y
    Appl Radiat Isot; 2017 Feb; 120():82-88. PubMed ID: 27936397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: a case study of Irish Sea beaches.
    Cresswell AJ; Sanderson DC
    Sci Total Environ; 2012 Oct; 437():285-96. PubMed ID: 22947616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and calibration of a real-time airborne radioactivity monitor using direct gamma-ray spectrometry with two scintillation detectors.
    Casanovas R; Morant JJ; Salvadó M
    Appl Radiat Isot; 2014 Jul; 89():102-8. PubMed ID: 24607535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of dry and wet atmospheric deposits of radioactive aerosols: application to Fukushima radiocaesium fallout.
    Gonze MA; Renaud P; Korsakissok I; Kato H; Hinton TG; Mourlon C; Simon-Cornu M
    Environ Sci Technol; 2014 Oct; 48(19):11268-76. PubMed ID: 25196232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental measurements and inspections on imported foods and feedstuffs in Greece after the Fukushima accident.
    Potiriadis C; Anagnostakis MJ; Clouvas A; Eleftheriadis K; Florou E; Housiadas C; Ioannides K; Ioannidou A; Karangelos DI; Karfopoulos KL; Kehagia K; Kolovou M; Kritidis P; Manolopoulou M; Papastefanou K; Savva MI; Simopoulos SE; Stamoulis K; Stoulos S; Xanthos S; Xarchoulakos D
    Radiat Prot Dosimetry; 2013 Oct; 156(4):465-74. PubMed ID: 23604742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerosol radioactivity record in Bratislava/Slovakia following the Fukushima accident--a comparison with global fallout and the Chernobyl accident.
    Povinec PP; Sýkora I; Holý K; Gera M; Kováčik A; Brest'áková L
    J Environ Radioact; 2012 Dec; 114():81-8. PubMed ID: 22683235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of simulated air filters for gamma-ray spectrometry proficiency testing.
    Ceccatelli A; De Felice P; Fazio A
    Appl Radiat Isot; 2010; 68(7-8):1240-6; discussion 1246. PubMed ID: 20138529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radionuclide concentrations in air particulate at Palermo (Italy) following Fukushima accident.
    Rizzo S; Tomarchio E
    Radiat Prot Dosimetry; 2013; 153(4):534-40. PubMed ID: 22847867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Various Spectra Methods Used in Vehicle-Based Nai(Tl) Spectrometry Survey.
    Li H; Liu J
    Health Phys; 2016 Aug; 111(2 Suppl 2):S133-40. PubMed ID: 27356163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OPTIMIZATION OF THE RADIOACTIVE AEROSOL SAMPLING AND MEASURING PROCEDURE WITH RESPECT TO RADON CONCENTRATION IN THE AIR.
    Hýža M; Rulík P; Bednář V
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):280-283. PubMed ID: 31867676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radioactivity measurements in the aquatic environment using in-situ and laboratory gamma-ray spectrometry.
    Eleftheriou G; Tsabaris C; Androulakaki EG; Patiris DL; Kokkoris M; Kalfas CA; Vlastou R
    Appl Radiat Isot; 2013 Dec; 82():268-78. PubMed ID: 24103707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of low-background gamma-ray spectrometry to monitor radioactivity in the environment and food.
    Khan AJ; Semkow TM; Beach SE; Haines DK; Bradt CJ; Bari A; Syed UF; Torres M; Marrantino J; Kitto ME; Menia T; Fielman E
    Appl Radiat Isot; 2014 Aug; 90():251-7. PubMed ID: 24836905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.