These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 28034677)
1. Thermal preference and performance in a sub-Antarctic caterpillar: A test of the coadaptation hypothesis and its alternatives. Haupt TM; Sinclair BJ; Chown SL J Insect Physiol; 2017 Apr; 98():108-116. PubMed ID: 28034677 [TBL] [Abstract][Full Text] [Related]
2. Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth. Chown SL; Haupt TM; Sinclair BJ J Insect Physiol; 2016 Feb; 85():10-6. PubMed ID: 26592773 [TBL] [Abstract][Full Text] [Related]
3. Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar. Sinclair BJ; Chown SL J Exp Biol; 2005 Mar; 208(Pt 5):869-79. PubMed ID: 15755885 [TBL] [Abstract][Full Text] [Related]
4. Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae). Chown SL; Jaco Klok C J Insect Physiol; 1997 Jul; 43(7):685-694. PubMed ID: 12769980 [TBL] [Abstract][Full Text] [Related]
5. Metabolism of the sub-Antarctic caterpillar Pringleophaga marioni during cooling, freezing and thawing. Sinclair BJ; Klok CJ; Chown SL J Exp Biol; 2004 Mar; 207(Pt 8):1287-94. PubMed ID: 15010479 [TBL] [Abstract][Full Text] [Related]
6. Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae). Sinclair BJ; Chown SL J Insect Physiol; 2003 Jan; 49(1):45-52. PubMed ID: 12770015 [TBL] [Abstract][Full Text] [Related]
7. Reduced mobility but high survival: thermal tolerance and locomotor response of the specialist herbivore, Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae), to low temperatures. Uyi OO; Zachariades C; Marais E; Hill MP Bull Entomol Res; 2017 Aug; 107(4):448-457. PubMed ID: 27974070 [TBL] [Abstract][Full Text] [Related]
8. Countergradient variation in locomotor performance of two sympatric Polynesian skinks (Emoia impar, Emoia cyanura). McElroy MT Physiol Biochem Zool; 2014; 87(2):222-30. PubMed ID: 24642540 [TBL] [Abstract][Full Text] [Related]
10. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). Lachenicht MW; Clusella-Trullas S; Boardman L; Le Roux C; Terblanche JS J Insect Physiol; 2010 Jul; 56(7):822-30. PubMed ID: 20197070 [TBL] [Abstract][Full Text] [Related]
11. A stringent test of the thermal coadaptation hypothesis in flour beetles. Halliday WD; Blouin-Demers G J Therm Biol; 2015 Aug; 52():108-16. PubMed ID: 26267505 [TBL] [Abstract][Full Text] [Related]
12. Caterpillars benefit from thermal ecosystem engineering by wandering albatrosses on sub-Antarctic Marion Island. Sinclair BJ; Chown SL Biol Lett; 2006 Mar; 2(1):51-4. PubMed ID: 17148324 [TBL] [Abstract][Full Text] [Related]
13. Phenotypic plasticity in locomotor performance of a monophyletic group of weevils accords with the 'warmer is better' hypothesis. Treasure AM; Chown SL J Exp Biol; 2019 May; 222(Pt 9):. PubMed ID: 30936269 [TBL] [Abstract][Full Text] [Related]