These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28034677)

  • 1. Thermal preference and performance in a sub-Antarctic caterpillar: A test of the coadaptation hypothesis and its alternatives.
    Haupt TM; Sinclair BJ; Chown SL
    J Insect Physiol; 2017 Apr; 98():108-116. PubMed ID: 28034677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similar metabolic rate-temperature relationships after acclimation at constant and fluctuating temperatures in caterpillars of a sub-Antarctic moth.
    Chown SL; Haupt TM; Sinclair BJ
    J Insect Physiol; 2016 Feb; 85():10-6. PubMed ID: 26592773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar.
    Sinclair BJ; Chown SL
    J Exp Biol; 2005 Mar; 208(Pt 5):869-79. PubMed ID: 15755885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae).
    Chown SL; Jaco Klok C
    J Insect Physiol; 1997 Jul; 43(7):685-694. PubMed ID: 12769980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of the sub-Antarctic caterpillar Pringleophaga marioni during cooling, freezing and thawing.
    Sinclair BJ; Klok CJ; Chown SL
    J Exp Biol; 2004 Mar; 207(Pt 8):1287-94. PubMed ID: 15010479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid responses to high temperature and desiccation but not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga marioni (Lepidoptera, Tineidae).
    Sinclair BJ; Chown SL
    J Insect Physiol; 2003 Jan; 49(1):45-52. PubMed ID: 12770015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced mobility but high survival: thermal tolerance and locomotor response of the specialist herbivore, Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae), to low temperatures.
    Uyi OO; Zachariades C; Marais E; Hill MP
    Bull Entomol Res; 2017 Aug; 107(4):448-457. PubMed ID: 27974070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Countergradient variation in locomotor performance of two sympatric Polynesian skinks (Emoia impar, Emoia cyanura).
    McElroy MT
    Physiol Biochem Zool; 2014; 87(2):222-30. PubMed ID: 24642540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertia in physiological traits: Embryonopsis halticella caterpillars (Yponomeutidae) across the Antarctic Polar Frontal Zone.
    Klok CJ; Chown SL
    J Insect Physiol; 2005 Jan; 51(1):87-97. PubMed ID: 15686650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae).
    Lachenicht MW; Clusella-Trullas S; Boardman L; Le Roux C; Terblanche JS
    J Insect Physiol; 2010 Jul; 56(7):822-30. PubMed ID: 20197070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stringent test of the thermal coadaptation hypothesis in flour beetles.
    Halliday WD; Blouin-Demers G
    J Therm Biol; 2015 Aug; 52():108-16. PubMed ID: 26267505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caterpillars benefit from thermal ecosystem engineering by wandering albatrosses on sub-Antarctic Marion Island.
    Sinclair BJ; Chown SL
    Biol Lett; 2006 Mar; 2(1):51-4. PubMed ID: 17148324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic plasticity in locomotor performance of a monophyletic group of weevils accords with the 'warmer is better' hypothesis.
    Treasure AM; Chown SL
    J Exp Biol; 2019 May; 222(Pt 9):. PubMed ID: 30936269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic plasticity of locomotion performance in the seed harvester Messor capensis (Formicidae).
    Clusella-Trullas S; Terblanche JS; Chown SL
    Physiol Biochem Zool; 2010; 83(3):519-30. PubMed ID: 20367320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates.
    Everatt MJ; Bale JS; Convey P; Worland MR; Hayward SA
    J Insect Physiol; 2013 Oct; 59(10):1057-64. PubMed ID: 23973412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal performance curves under daily thermal fluctuation: A study in helmeted water toad tadpoles.
    Bartheld JL; Artacho P; Bacigalupe L
    J Therm Biol; 2017 Dec; 70(Pt B):80-85. PubMed ID: 29108561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beneficial acclimation and the Bogert effect.
    Marais E; Chown SL
    Ecol Lett; 2008 Oct; 11(10):1027-36. PubMed ID: 18616546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stenotherms at sub-zero temperatures: thermal dependence of swimming performance in Antarctic fish.
    Wilson RS; Franklin CE; Davison W; Kraft P
    J Comp Physiol B; 2001 May; 171(4):263-9. PubMed ID: 11409623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species.
    Slabber S; Worland MR; Leinaas HP; Chown SL
    J Insect Physiol; 2007 Feb; 53(2):113-25. PubMed ID: 17222862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki.
    Franklin CE; Davison W; Seebacher F
    J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.