These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 28034678)
1. New insights on the role of alkaline phosphatase 2 from Spodoptera exigua (Hübner) in the action mechanism of Bt toxin Cry2Aa. Yuan X; Zhao M; Wei J; Zhang W; Wang B; Myint Khaing M; Liang G J Insect Physiol; 2017 Apr; 98():101-107. PubMed ID: 28034678 [TBL] [Abstract][Full Text] [Related]
2. Functional roles of cadherin, aminopeptidase-N and alkaline phosphatase from Helicoverpa armigera (Hübner) in the action mechanism of Bacillus thuringiensis Cry2Aa. Zhao M; Yuan X; Wei J; Zhang W; Wang B; Myint Khaing M; Liang G Sci Rep; 2017 May; 7():46555. PubMed ID: 28488696 [TBL] [Abstract][Full Text] [Related]
3. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. Qiu L; Hou L; Zhang B; Liu L; Li B; Deng P; Ma W; Wang X; Fabrick JA; Chen L; Lei C J Invertebr Pathol; 2015 May; 127():47-53. PubMed ID: 25754522 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis of Cry2Aa-binding proteins and their receptor function in Spodoptera exigua. Qiu L; Zhang B; Liu L; Ma W; Wang X; Lei C; Chen L Sci Rep; 2017 Jan; 7():40222. PubMed ID: 28067269 [TBL] [Abstract][Full Text] [Related]
5. Downregulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines. Qiu L; Wang P; Wu T; Li B; Wang X; Lei C; Lin Y; Zhao J; Ma W Insect Mol Biol; 2018 Feb; 27(1):83-89. PubMed ID: 28940938 [TBL] [Abstract][Full Text] [Related]
6. Alkaline phosphatase 2 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Wei J; Zhang M; Liang G; Li X Insect Mol Biol; 2019 Jun; 28(3):372-379. PubMed ID: 30474197 [TBL] [Abstract][Full Text] [Related]
7. Role of Bacillus thuringiensis Cry1A toxins domains in the binding to the ABCC2 receptor from Spodoptera exigua. Martínez-Solís M; Pinos D; Endo H; Portugal L; Sato R; Ferré J; Herrero S; Hernández-Martínez P Insect Biochem Mol Biol; 2018 Oct; 101():47-56. PubMed ID: 30077769 [TBL] [Abstract][Full Text] [Related]
8. The Spodoptera exigua (Lepidoptera: Noctuidae) ABCC2 Mediates Cry1Ac Cytotoxicity and, in Conjunction with Cadherin, Contributes to Enhance Cry1Ca Toxicity in Sf9 Cells. Ren XL; Jiang WL; Ma YJ; Hu HY; Ma XY; Ma Y; Li GQ J Econ Entomol; 2016 Dec; 109(6):2281-2289. PubMed ID: 27986933 [TBL] [Abstract][Full Text] [Related]
9. RNA interference of cadherin gene expression in Spodoptera exigua reveals its significance as a specific Bt target. Park Y; Kim Y J Invertebr Pathol; 2013 Nov; 114(3):285-91. PubMed ID: 24055650 [TBL] [Abstract][Full Text] [Related]
10. Possible Insecticidal Mechanisms Mediated by Immune-Response-Related Cry-Binding Proteins in the Midgut Juice of Plutella xylostella and Spodoptera exigua. Lu K; Gu Y; Liu X; Lin Y; Yu XQ J Agric Food Chem; 2017 Mar; 65(10):2048-2055. PubMed ID: 28231709 [TBL] [Abstract][Full Text] [Related]
11. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. Herrero S; Gechev T; Bakker PL; Moar WJ; de Maagd RA BMC Genomics; 2005 Jun; 6():96. PubMed ID: 15978131 [TBL] [Abstract][Full Text] [Related]
12. Manduca sexta (Lepidoptera: Sphingidae) cadherin fragments function as synergists for Cry1A and Cry1C Bacillus thuringiensis toxins against noctuid moths Helicoverpa zea, Agrotis ipsilon and Spodoptera exigua. Abdullah MA; Moussa S; Taylor MD; Adang MJ Pest Manag Sci; 2009 Oct; 65(10):1097-103. PubMed ID: 19489014 [TBL] [Abstract][Full Text] [Related]
13. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua. Zuo YY; Huang JL; Wang J; Feng Y; Han TT; Wu YD; Yang YH Insect Mol Biol; 2018 Feb; 27(1):36-45. PubMed ID: 28753233 [TBL] [Abstract][Full Text] [Related]
14. MicroRNA-998-3p contributes to Cry1Ac-resistance by targeting ABCC2 in lepidopteran insects. Zhu B; Sun X; Nie X; Liang P; Gao X Insect Biochem Mol Biol; 2020 Feb; 117():103283. PubMed ID: 31759051 [TBL] [Abstract][Full Text] [Related]
15. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. Park Y; González-Martínez RM; Navarro-Cerrillo G; Chakroun M; Kim Y; Ziarsolo P; Blanca J; Cañizares J; Ferré J; Herrero S BMC Biol; 2014 Jun; 12():46. PubMed ID: 24912445 [TBL] [Abstract][Full Text] [Related]
16. Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. Hernández-Martínez P; Navarro-Cerrillo G; Caccia S; de Maagd RA; Moar WJ; Ferré J; Escriche B; Herrero S PLoS One; 2010 Sep; 5(9):. PubMed ID: 20862260 [TBL] [Abstract][Full Text] [Related]
17. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda. Zhu YC; Blanco CA; Portilla M; Adamczyk J; Luttrell R; Huang F Pestic Biochem Physiol; 2015 Jul; 122():15-21. PubMed ID: 26071802 [TBL] [Abstract][Full Text] [Related]
18. REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua. Herrero S; Ansems M; Van Oers MM; Vlak JM; Bakker PL; de Maagd RA Insect Biochem Mol Biol; 2007 Nov; 37(11):1109-18. PubMed ID: 17916497 [TBL] [Abstract][Full Text] [Related]
19. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. Vatanparast M; Kim Y PLoS One; 2017; 12(8):e0183054. PubMed ID: 28800614 [TBL] [Abstract][Full Text] [Related]
20. PirB-Cry2Aa hybrid protein exhibits enhanced insecticidal activity against Spodoptera exigua larvae. Hu X; Liu Z; Li Y; Ding X; Xia L; Hu S J Invertebr Pathol; 2014 Jul; 120():40-2. PubMed ID: 24879991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]