These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28034699)

  • 1. Playing with the cell cycle to build the spinal cord.
    Molina A; Pituello F
    Dev Biol; 2017 Dec; 432(1):14-23. PubMed ID: 28034699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cux2 (Cutl2) integrates neural progenitor development with cell-cycle progression during spinal cord neurogenesis.
    Iulianella A; Sharma M; Durnin M; Vanden Heuvel GB; Trainor PA
    Development; 2008 Feb; 135(4):729-41. PubMed ID: 18223201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific regulation of cyclins D1 and D2 by FGF and Shh signaling coordinates cell cycle progression, patterning, and differentiation during early steps of spinal cord development.
    Lobjois V; Benazeraf B; Bertrand N; Medevielle F; Pituello F
    Dev Biol; 2004 Sep; 273(2):195-209. PubMed ID: 15328007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forcing neural progenitor cells to cycle is insufficient to alter cell-fate decision and timing of neuronal differentiation in the spinal cord.
    Lobjois V; Bel-Vialar S; Trousse F; Pituello F
    Neural Dev; 2008 Feb; 3():4. PubMed ID: 18271960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurogenic decisions require a cell cycle independent function of the CDC25B phosphatase.
    Bonnet F; Molina A; Roussat M; Azais M; Bel-Vialar S; Gautrais J; Pituello F; Agius E
    Elife; 2018 Jul; 7():. PubMed ID: 29969095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From signalling to form: the coordination of neural tube patterning.
    Frith TJR; Briscoe J; Boezio GLM
    Curr Top Dev Biol; 2024; 159():168-231. PubMed ID: 38729676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mosaic evolution of neural development in anurans: acceleration of spinal cord development in the direct developing frog Eleutherodactylus coqui.
    Schlosser G
    Anat Embryol (Berl); 2003 Feb; 206(3):215-27. PubMed ID: 12592573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord.
    Bel-Vialar S; Medevielle F; Pituello F
    Dev Biol; 2007 May; 305(2):659-73. PubMed ID: 17399698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proliferation and recapitulation of developmental patterning associated with regulative regeneration of the spinal cord neural tube.
    Halasi G; Søviknes AM; Sigurjonsson O; Glover JC
    Dev Biol; 2012 May; 365(1):118-32. PubMed ID: 22370002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphogens and the control of cell proliferation and patterning in the spinal cord.
    Ulloa F; Briscoe J
    Cell Cycle; 2007 Nov; 6(21):2640-9. PubMed ID: 17912034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of roof plate formation by Lmx1a in the developing spinal cord.
    Chizhikov VV; Millen KJ
    Development; 2004 Jun; 131(11):2693-705. PubMed ID: 15148302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing neuronal diversity in the spinal cord: a time and a place.
    Sagner A; Briscoe J
    Development; 2019 Nov; 146(22):. PubMed ID: 31767567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinate regulation of neural tube patterning and proliferation by TGFbeta and WNT activity.
    Chesnutt C; Burrus LW; Brown AM; Niswander L
    Dev Biol; 2004 Oct; 274(2):334-47. PubMed ID: 15385163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing the spinal cord development with neural progenitor cells losing their proliferative capacity: a theoretical analysis.
    Azaïs M; Agius E; Blanco S; Molina A; Pituello F; Tregan JM; Vallet A; Gautrais J
    Neural Dev; 2019 Mar; 14(1):7. PubMed ID: 30867016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wnt/BMP signal integration regulates the balance between proliferation and differentiation of neuroepithelial cells in the dorsal spinal cord.
    Ille F; Atanasoski S; Falk S; Ittner LM; Märki D; Büchmann-Møller S; Wurdak H; Suter U; Taketo MM; Sommer L
    Dev Biol; 2007 Apr; 304(1):394-408. PubMed ID: 17292876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CDC25B phosphatase shortens the G2 phase of neural progenitors and promotes efficient neuron production.
    Peco E; Escude T; Agius E; Sabado V; Medevielle F; Ducommun B; Pituello F
    Development; 2012 Mar; 139(6):1095-104. PubMed ID: 22318230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional networks regulating neuronal identity in the developing spinal cord.
    Lee SK; Pfaff SL
    Nat Neurosci; 2001 Nov; 4 Suppl():1183-91. PubMed ID: 11687828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulating the dorsal neural tube expression of Ptf1a through a distal 3' enhancer.
    Mona B; Avila JM; Meredith DM; Kollipara RK; Johnson JE
    Dev Biol; 2016 Oct; 418(1):216-225. PubMed ID: 27350561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythropoietin promotes spinal cord-derived neural progenitor cell proliferation by regulating cell cycle.
    Wang Y; Yao M; Zhou C; Dong D; Jiang Y; Wei G; Cui X
    Neuroscience; 2010 May; 167(3):750-7. PubMed ID: 20167254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progenitor dispersal and the origin of early neuronal phenotypes in the chick embryo spinal cord.
    Erskine L; Patel K; Clarke JD
    Dev Biol; 1998 Jul; 199(1):26-41. PubMed ID: 9676190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.