BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 28035013)

  • 21. Sodium bicarbonate ingestion prior to training improves mitochondrial adaptations in rats.
    Bishop DJ; Thomas C; Moore-Morris T; Tonkonogi M; Sahlin K; Mercier J
    Am J Physiol Endocrinol Metab; 2010 Aug; 299(2):E225-33. PubMed ID: 20484007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle unloading induces slow to fast transitions in myofibrillar but not mitochondrial properties. Relevance to skeletal muscle abnormalities in heart failure.
    Bigard AX; Boehm E; Veksler V; Mateo P; Anflous K; Ventura-Clapier R
    J Mol Cell Cardiol; 1998 Nov; 30(11):2391-401. PubMed ID: 9925374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats.
    Zoladz JA; Koziel A; Broniarek I; Woyda-Ploszczyca AM; Ogrodna K; Majerczak J; Celichowski J; Szkutnik Z; Jarmuszkiewicz W
    PLoS One; 2017; 12(12):e0189456. PubMed ID: 29232696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.
    Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ
    Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise.
    Fernström M; Bakkman L; Tonkonogi M; Shabalina IG; Rozhdestvenskaya Z; Mattsson CM; Enqvist JK; Ekblom B; Sahlin K
    J Appl Physiol (1985); 2007 May; 102(5):1844-9. PubMed ID: 17234801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation.
    Mansor LS; Mehta K; Aksentijevic D; Carr CA; Lund T; Cole MA; Le Page L; Sousa Fialho Mda L; Shattock MJ; Aasum E; Clarke K; Tyler DJ; Heather LC
    J Physiol; 2016 Jan; 594(2):307-20. PubMed ID: 26574233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of dietary fat content on phospholipid fatty acid profile is muscle fiber type dependent.
    Janovská A; Hatzinikolas G; Mano M; Wittert GA
    Am J Physiol Endocrinol Metab; 2010 Apr; 298(4):E779-86. PubMed ID: 20086199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of fatty acid translocase on human skeletal muscle mitochondrial membranes: essential role in fatty acid oxidation.
    Bezaire V; Bruce CR; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL
    Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E509-15. PubMed ID: 16219667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle type-specific fatty acid metabolism in insulin resistance: an integrated in vivo study in Zucker diabetic fatty rats.
    Beha A; Juretschke HP; Kuhlmann J; Neumann-Haefelin C; Belz U; Gerl M; Kramer W; Roden M; Herling AW
    Am J Physiol Endocrinol Metab; 2006 May; 290(5):E989-97. PubMed ID: 16380389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PPARdelta expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer.
    Lunde IG; Ekmark M; Rana ZA; Buonanno A; Gundersen K
    J Physiol; 2007 Aug; 582(Pt 3):1277-87. PubMed ID: 17463039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Depressed fatigue-induced oxidative stress in chronic hypoxemic humans and rats.
    Steinberg JG; Faucher M; Guillot C; Kipson N; Badier M; Jammes Y
    Respir Physiol Neurobiol; 2004 Jul; 141(2):179-89. PubMed ID: 15239968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.
    de Theije CC; Langen RC; Lamers WH; Gosker HR; Schols AM; Köhler SE
    J Appl Physiol (1985); 2015 Jan; 118(2):200-11. PubMed ID: 25429096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flux control analysis of mitochondrial oxidative phosphorylation in rat skeletal muscle: pyruvate and palmitoyl-carnitine as substrates give different control patterns.
    Fritzen AJ; Grunnet N; Quistorff B
    Eur J Appl Physiol; 2007 Dec; 101(6):679-89. PubMed ID: 17717681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential responses to chronic hypoxia and dietary restriction of aerobic capacity and enzyme levels in the rat myocardium.
    Daneshrad Z; Garcia-Riera MP; Verdys M; Rossi A
    Mol Cell Biochem; 2000 Jul; 210(1-2):159-66. PubMed ID: 10976769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hypoxia-dependent changes of enzyme activities in different fibre types of rat soleus and extensor digitorum longus muscles. A cytophotometrical study.
    Punkt K; Unger A; Welt K; Hilbig H; Schaffranietz L
    Acta Histochem; 1996 Jul; 98(3):255-69. PubMed ID: 8863855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphofunctional responses to anaemia in rat skeletal muscle.
    Esteva S; Panisello P; Casas M; Torrella JR; Pagés T; Viscor G
    J Anat; 2008 Jun; 212(6):836-44. PubMed ID: 18510510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diet restriction plays an important role in the alterations of heart mitochondrial function following exposure of young rats to chronic hypoxia.
    Daneshrad Z; Novel-Chaté V; Birot O; Serrurier B; Sanchez H; Bigard AX; Rossi A
    Pflugers Arch; 2001 Apr; 442(1):12-8. PubMed ID: 11374059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype.
    Hénique C; Mansouri A; Vavrova E; Lenoir V; Ferry A; Esnous C; Ramond E; Girard J; Bouillaud F; Prip-Buus C; Cohen I
    FASEB J; 2015 Jun; 29(6):2473-83. PubMed ID: 25713059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle.
    Magalhães J; Ascensão A; Soares JM; Ferreira R; Neuparth MJ; Marques F; Duarte JA
    J Appl Physiol (1985); 2005 Oct; 99(4):1247-53. PubMed ID: 15905323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview.
    Holloway GP; Luiken JJ; Glatz JF; Spriet LL; Bonen A
    Acta Physiol (Oxf); 2008 Dec; 194(4):293-309. PubMed ID: 18510711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.