BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 28035013)

  • 41. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers.
    Roels B; Thomas C; Bentley DJ; Mercier J; Hayot M; Millet G
    J Appl Physiol (1985); 2007 Jan; 102(1):79-86. PubMed ID: 16990498
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sucrose-Enriched and Carbohydrate-Free High-Fat Diets Distinctly Affect Substrate Metabolism in Oxidative and Glycolytic Muscles of Rats.
    Da Eira D; Jani S; Stefanovic M; Ceddia RB
    Nutrients; 2024 Jan; 16(2):. PubMed ID: 38257179
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Activation of PPAR-delta in isolated rat skeletal muscle switches fuel preference from glucose to fatty acids.
    Brunmair B; Staniek K; Dörig J; Szöcs Z; Stadlbauer K; Marian V; Gras F; Anderwald C; Nohl H; Waldhäusl W; Fürnsinn C
    Diabetologia; 2006 Nov; 49(11):2713-22. PubMed ID: 16960684
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chronic renal failure, parathyroid hormone and fatty acids oxidation in skeletal muscle.
    Smogorzewski M; Piskorska G; Borum PR; Massry SG
    Kidney Int; 1988 Feb; 33(2):555-60. PubMed ID: 3361755
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Skeletal muscle fuel selection occurs at the mitochondrial level.
    Kuzmiak-Glancy S; Willis WT
    J Exp Biol; 2014 Jun; 217(Pt 11):1993-2003. PubMed ID: 24625643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.
    Chicco AJ; Le CH; Gnaiger E; Dreyer HC; Muyskens JB; D'Alessandro A; Nemkov T; Hocker AD; Prenni JE; Wolfe LM; Sindt NM; Lovering AT; Subudhi AW; Roach RC
    J Biol Chem; 2018 May; 293(18):6659-6671. PubMed ID: 29540485
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Skeletal muscle undergoes fiber type metabolic switch without myosin heavy chain switch in response to defective fatty acid oxidation.
    Pereyra AS; Lin CT; Sanchez DM; Laskin J; Spangenburg EE; Neufer PD; Fisher-Wellman K; Ellis JM
    Mol Metab; 2022 May; 59():101456. PubMed ID: 35150906
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of endurance training and/or fish oil supplemented diet on cytoplasmic fatty acid binding protein in rat skeletal muscles and heart.
    Clavel S; Farout L; Briand M; Briand Y; Jouanel P
    Eur J Appl Physiol; 2002 Jul; 87(3):193-201. PubMed ID: 12111278
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions.
    Vogt M; Puntschart A; Geiser J; Zuleger C; Billeter R; Hoppeler H
    J Appl Physiol (1985); 2001 Jul; 91(1):173-82. PubMed ID: 11408428
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation.
    McFarlan JT; Yoshida Y; Jain SS; Han XX; Snook LA; Lally J; Smith BK; Glatz JF; Luiken JJ; Sayer RA; Tupling AR; Chabowski A; Holloway GP; Bonen A
    J Biol Chem; 2012 Jul; 287(28):23502-16. PubMed ID: 22584574
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a high-throughput method for real-time assessment of cellular metabolism in intact long skeletal muscle fibre bundles.
    Li R; Steyn FJ; Stout MB; Lee K; Cully TR; Calderón JC; Ngo ST
    J Physiol; 2016 Dec; 594(24):7197-7213. PubMed ID: 27619319
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exercise and suspension hypokinesia-induced alterations in mechanical properties of rat fast and slow-twitch skeletal muscles.
    Ertunc M; Atalay A; Yildirim M; Onur R
    Acta Physiol Hung; 2010 Sep; 97(3):316-25. PubMed ID: 20843770
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acute and chronic effects of adriamycin on fatty acid oxidation in isolated cardiac myocytes.
    Abdel-aleem S; el-Merzabani MM; Sayed-Ahmed M; Taylor DA; Lowe JE
    J Mol Cell Cardiol; 1997 Feb; 29(2):789-97. PubMed ID: 9140835
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast- versus slow-twitch muscle contractile function in C57BL/6J mice.
    Ciapaite J; van den Berg SA; Houten SM; Nicolay K; van Dijk KW; Jeneson JA
    J Nutr Biochem; 2015 Feb; 26(2):155-64. PubMed ID: 25516489
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle.
    Rasmussen BB; Holmbäck UC; Volpi E; Morio-Liondore B; Paddon-Jones D; Wolfe RR
    J Clin Invest; 2002 Dec; 110(11):1687-93. PubMed ID: 12464674
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid regulation of substrate use for oxidative phosphorylation during a single session of high intensity interval or aerobic exercises in different rat skeletal muscles.
    Martins EL; Ricardo JC; de-Souza-Ferreira E; Camacho-Pereira J; Ramos-Filho D; Galina A
    Comp Biochem Physiol B Biochem Mol Biol; 2018 Mar; 217():40-50. PubMed ID: 29222029
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential effects of docoosahexaenoic and arachidonic acid on fatty acid composition and myosin heavy chain-related genes of slow- and fast-twitch skeletal muscle tissues.
    Hashimoto M; Inoue T; Katakura M; Hossain S; Mamun AA; Matsuzaki K; Arai H; Shido O
    Mol Cell Biochem; 2016 Apr; 415(1-2):169-81. PubMed ID: 27021216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Loss of skeletal muscle HIF-1alpha results in altered exercise endurance.
    Mason SD; Howlett RA; Kim MJ; Olfert IM; Hogan MC; McNulty W; Hickey RP; Wagner PD; Kahn CR; Giordano FJ; Johnson RS
    PLoS Biol; 2004 Oct; 2(10):e288. PubMed ID: 15328538
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High Intensity Interval Training (HIIT) Induces Specific Changes in Respiration and Electron Leakage in the Mitochondria of Different Rat Skeletal Muscles.
    Ramos-Filho D; Chicaybam G; de-Souza-Ferreira E; Guerra Martinez C; Kurtenbach E; Casimiro-Lopes G; Galina A
    PLoS One; 2015; 10(6):e0131766. PubMed ID: 26121248
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effects of different hypoxic training modes on activities of mitochondrial antioxidants and respiratory chain complex in skeletal muscle after exhaustive running in rat].
    Li J; Zhang YB
    Sheng Li Xue Bao; 2011 Feb; 63(1):55-61. PubMed ID: 21340435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.