These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28035015)

  • 21. Laboratory versus outdoor cycling conditions: differences in pedaling biomechanics.
    Bertucci W; Grappe F; Groslambert A
    J Appl Biomech; 2007 May; 23(2):87-92. PubMed ID: 17603128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of low- vs. high-cadence interval training on cycling performance.
    Paton CD; Hopkins WG; Cook C
    J Strength Cond Res; 2009 Sep; 23(6):1758-63. PubMed ID: 19675486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maximal strength training improves cycling economy in competitive cyclists.
    Sunde A; Støren O; Bjerkaas M; Larsen MH; Hoff J; Helgerud J
    J Strength Cond Res; 2010 Aug; 24(8):2157-65. PubMed ID: 19855311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peak power output predicts maximal oxygen uptake and performance time in trained cyclists.
    Hawley JA; Noakes TD
    Eur J Appl Physiol Occup Physiol; 1992; 65(1):79-83. PubMed ID: 1505544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of pedal cadence on the respiratory compensation point and its relation to critical power.
    Broxterman RM; Ade CJ; Barker T; Barstow TJ
    Respir Physiol Neurobiol; 2015 Mar; 208():1-7. PubMed ID: 25523595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does endurance or sprint training influence the perception of the optimal pedalling rate during submaximal cycling exercise?
    Hintzy F; Groslambert A; Dugué B; Rouillon JD; Belli A
    Int J Sports Med; 2001 Oct; 22(7):513-6. PubMed ID: 11590478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Is economy of competitive cyclists affected by the anterior-posterior foot position on the pedal?
    Van Sickle JR; Hull ML
    J Biomech; 2007; 40(6):1262-7. PubMed ID: 16901493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intensity of Nordic Walking in young females with different peak O2 consumption.
    Jürimäe T; Meema K; Karelson K; Purge P; Jürimäe J
    Clin Physiol Funct Imaging; 2009 Sep; 29(5):330-4. PubMed ID: 19469785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strength training improves performance and pedaling characteristics in elite cyclists.
    Rønnestad BR; Hansen J; Hollan I; Ellefsen S
    Scand J Med Sci Sports; 2015 Feb; 25(1):e89-98. PubMed ID: 24862305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency of the VO2max plateau phenomenon in world-class cyclists.
    Lucía A; Rabadán M; Hoyos J; Hernández-Capilla M; Pérez M; San Juan AF; Earnest CP; Chicharro JL
    Int J Sports Med; 2006 Dec; 27(12):984-92. PubMed ID: 16739087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling.
    Bertucci W; Grappe F; Girard A; Betik A; Rouillon JD
    J Biomech; 2005 May; 38(5):1003-10. PubMed ID: 15797582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of training status, age, and muscle fiber type on cycling efficiency and endurance performance.
    Hopker JG; Coleman DA; Gregson HC; Jobson SA; Von der Haar T; Wiles J; Passfield L
    J Appl Physiol (1985); 2013 Sep; 115(5):723-9. PubMed ID: 23813527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is it possible to individualize intensity of eccentric cycling exercise from perceived exertion on concentric test?
    Laroche D; Joussain C; Espagnac C; Morisset C; Tordi N; Gremeaux V; Casillas JM
    Arch Phys Med Rehabil; 2013 Aug; 94(8):1621-1627.e1. PubMed ID: 23270934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Concomitant application of sprint and high-intensity interval training on maximal oxygen uptake and work output in well-trained cyclists.
    Hebisz P; Hebisz R; Zatoń M; Ochmann B; Mielnik N
    Eur J Appl Physiol; 2016 Aug; 116(8):1495-502. PubMed ID: 27262887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pedalling rate affects endurance performance during high-intensity cycling.
    Nielsen JS; Hansen EA; Sjøgaard G
    Eur J Appl Physiol; 2004 Jun; 92(1-2):114-20. PubMed ID: 15024664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Three Commercially Available Sports Drinks on Substrate Metabolism and Subsequent Endurance Performance in a Postprandial State.
    Qin L; Wang QR; Fang ZL; Wang T; Yu AQ; Zhou YJ; Zheng Y; Yi MQ
    Nutrients; 2017 Apr; 9(4):. PubMed ID: 28417910
    [No Abstract]   [Full Text] [Related]  

  • 37. Physiological effects of constant versus variable power during endurance cycling.
    Liedl MA; Swain DP; Branch JD
    Med Sci Sports Exerc; 1999 Oct; 31(10):1472-7. PubMed ID: 10527322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of modified exponential tapering technique on perceived exertion, heart rate, time trial performance, VO2max and power output among highly trained junior cyclists.
    Ishak A; Hashim HA; Krasilshchikov O
    J Sports Med Phys Fitness; 2016 Sep; 56(9):961-7. PubMed ID: 26004044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Joint-specific power-pedaling rate relationships during maximal cycling.
    McDaniel J; Behjani NS; Elmer SJ; Brown NA; Martin JC
    J Appl Biomech; 2014 Jun; 30(3):423-30. PubMed ID: 24610335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measuring submaximal performance parameters to monitor fatigue and predict cycling performance: a case study of a world-class cyclo-cross cyclist.
    Lamberts RP; Rietjens GJ; Tijdink HH; Noakes TD; Lambert MI
    Eur J Appl Physiol; 2010 Jan; 108(1):183-90. PubMed ID: 19921241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.