These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28035018)

  • 41. STAT3 signaling is activated in human skeletal muscle following acute resistance exercise.
    Trenerry MK; Carey KA; Ward AC; Cameron-Smith D
    J Appl Physiol (1985); 2007 Apr; 102(4):1483-9. PubMed ID: 17204573
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of acute exercise and training on insulin action and sensitivity: focus on molecular mechanisms in muscle.
    Wojtaszewski JF; Richter EA
    Essays Biochem; 2006; 42():31-46. PubMed ID: 17144878
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.
    Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K
    J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exercise type and volume alter signaling pathways regulating skeletal muscle glucose uptake and protein synthesis.
    Ahtiainen JP; Walker S; Silvennoinen M; Kyröläinen H; Nindl BC; Häkkinen K; Nyman K; Selänne H; Hulmi JJ
    Eur J Appl Physiol; 2015 Sep; 115(9):1835-45. PubMed ID: 25861013
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increased insulin-stimulated Akt pSer473 and cytosolic SHP2 protein abundance in human skeletal muscle following acute exercise and short-term training.
    Wadley GD; Konstantopoulos N; Macaulay L; Howlett KF; Garnham A; Hargreaves M; Cameron-Smith D
    J Appl Physiol (1985); 2007 Apr; 102(4):1624-31. PubMed ID: 17185494
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of statins on distinct circulating microRNAs during prolonged aerobic exercise.
    Min PK; Park J; Isaacs S; Taylor BA; Thompson PD; Troyanos C; D'Hemecourt P; Dyer S; Chan SY; Baggish AL
    J Appl Physiol (1985); 2016 Mar; 120(6):711-20. PubMed ID: 26472872
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The clinical potential of circulating microRNAs in obesity.
    Ji C; Guo X
    Nat Rev Endocrinol; 2019 Dec; 15(12):731-743. PubMed ID: 31611648
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MicroRNAs and Physical Activity.
    Altana V; Geretto M; Pulliero A
    Microrna; 2015; 4(2):74-85. PubMed ID: 26268469
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance.
    Gibala MJ; Little JP; van Essen M; Wilkin GP; Burgomaster KA; Safdar A; Raha S; Tarnopolsky MA
    J Physiol; 2006 Sep; 575(Pt 3):901-11. PubMed ID: 16825308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.
    Breitbach S; Tug S; Simon P
    Sports Med; 2012 Jul; 42(7):565-86. PubMed ID: 22694348
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-intensity interval training: a time-efficient strategy for health promotion?
    Gibala MJ
    Curr Sports Med Rep; 2007 Jul; 6(4):211-3. PubMed ID: 17617995
    [No Abstract]   [Full Text] [Related]  

  • 52. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle.
    Perry CG; Heigenhauser GJ; Bonen A; Spriet LL
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1112-23. PubMed ID: 19088769
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Non-uniform muscle adaptations to eccentric exercise and the implications for training and sport.
    Hedayatpour N; Falla D
    J Electromyogr Kinesiol; 2012 Jun; 22(3):329-33. PubMed ID: 22192598
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Circulating miRNAs as Putative Biomarkers of Exercise Adaptation in Endurance Horses.
    Cappelli K; Capomaccio S; Viglino A; Silvestrelli M; Beccati F; Moscati L; Chiaradia E
    Front Physiol; 2018; 9():429. PubMed ID: 29740341
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of microRNAs in the age-related changes in skeletal muscle and diet or exercise interventions to promote healthy aging in humans.
    McGregor RA; Poppitt SD; Cameron-Smith D
    Ageing Res Rev; 2014 Sep; 17():25-33. PubMed ID: 24833328
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Training for skeletal muscle capillarization: a Janus-faced role of exercise intensity?
    Gliemann L
    Eur J Appl Physiol; 2016 Aug; 116(8):1443-4. PubMed ID: 27342704
    [No Abstract]   [Full Text] [Related]  

  • 57. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.
    Rivera-Brown AM; Frontera WR
    PM R; 2012 Nov; 4(11):797-804. PubMed ID: 23174541
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle.
    Keller C; Steensberg A; Hansen AK; Fischer CP; Plomgaard P; Pedersen BK
    J Appl Physiol (1985); 2005 Dec; 99(6):2075-9. PubMed ID: 16099893
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men.
    Wilhelm EN; Rech A; Minozzo F; Botton CE; Radaelli R; Teixeira BC; Reischak-Oliveira A; Pinto RS
    Exp Gerontol; 2014 Dec; 60():207-14. PubMed ID: 25449853
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration.
    Stellingwerff T; Spriet LL; Watt MJ; Kimber NE; Hargreaves M; Hawley JA; Burke LM
    Am J Physiol Endocrinol Metab; 2006 Feb; 290(2):E380-8. PubMed ID: 16188909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.