These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28035026)

  • 1. InMoDe: tools for learning and visualizing intra-motif dependencies of DNA binding sites.
    Eggeling R; Grosse I; Grau J
    Bioinformatics; 2017 Feb; 33(4):580-582. PubMed ID: 28035026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
    Eggeling R; Roos T; Myllymäki P; Grosse I
    BMC Bioinformatics; 2015 Nov; 16():375. PubMed ID: 26552868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispom: a discriminative de-novo motif discovery tool based on the jstacs library.
    Grau J; Keilwagen J; Gohr A; Paponov IA; Posch S; Seifert M; Strickert M; Grosse I
    J Bioinform Comput Biol; 2013 Feb; 11(1):1340006. PubMed ID: 23427988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining phylogenetic footprinting with motif models incorporating intra-motif dependencies.
    Nettling M; Treutler H; Cerquides J; Grosse I
    BMC Bioinformatics; 2017 Mar; 18(1):141. PubMed ID: 28249564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De-novo discovery of differentially abundant transcription factor binding sites including their positional preference.
    Keilwagen J; Grau J; Paponov IA; Posch S; Strickert M; Grosse I
    PLoS Comput Biol; 2011 Feb; 7(2):e1001070. PubMed ID: 21347314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors.
    Omidi S; Zavolan M; Pachkov M; Breda J; Berger S; van Nimwegen E
    PLoS Comput Biol; 2017 Jul; 13(7):e1005176. PubMed ID: 28753602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments.
    van Heeringen SJ; Veenstra GJ
    Bioinformatics; 2011 Jan; 27(2):270-1. PubMed ID: 21081511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling transcription factor binding site complexity.
    Eggeling R
    Nucleic Acids Res; 2018 Nov; 46(20):e121. PubMed ID: 30085218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic approaches to transcription factor binding site prediction.
    Posch S; Grau J; Gohr A; Keilwagen J; Grosse I
    Methods Mol Biol; 2010; 674():97-119. PubMed ID: 20827588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Slider: sequence logo interactive data-visualization for education and research.
    Waese J; Pasha A; Wang TT; van Weringh A; Guttman DS; Provart NJ
    Bioinformatics; 2016 Dec; 32(23):3670-3672. PubMed ID: 27522081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iMotifs: an integrated sequence motif visualization and analysis environment.
    Piipari M; Down TA; Saini H; Enright A; Hubbard TJ
    Bioinformatics; 2010 Mar; 26(6):843-4. PubMed ID: 20106815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TEMPLE: analysing population genetic variation at transcription factor binding sites.
    Litovchenko M; Laurent S
    Mol Ecol Resour; 2016 Nov; 16(6):1428-1434. PubMed ID: 27106869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular discovery of monomeric and dimeric transcription factor binding motifs for large data sets.
    Toivonen J; Kivioja T; Jolma A; Yin Y; Taipale J; Ukkonen E
    Nucleic Acids Res; 2018 May; 46(8):e44. PubMed ID: 29385521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CircularLogo: A lightweight web application to visualize intra-motif dependencies.
    Ye Z; Ma T; Kalmbach MT; Dasari S; Kocher JA; Wang L
    BMC Bioinformatics; 2017 May; 18(1):269. PubMed ID: 28532394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BEST: binding-site estimation suite of tools.
    Che D; Jensen S; Cai L; Liu JS
    Bioinformatics; 2005 Jun; 21(12):2909-11. PubMed ID: 15814553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites.
    Yang J; Ramsey SA
    Bioinformatics; 2015 Nov; 31(21):3445-50. PubMed ID: 26130577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimally choosing PWM motif databases and sequence scanning approaches based on ChIP-seq data.
    Dabrowski M; Dojer N; Krystkowiak I; Kaminska B; Wilczynski B
    BMC Bioinformatics; 2015 May; 16():140. PubMed ID: 25927199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic analysis: ChIP-chip and ChIP-seq.
    Pellegrini M; Ferrari R
    Methods Mol Biol; 2012; 802():377-87. PubMed ID: 22130894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.
    Liu XS; Brutlag DL; Liu JS
    Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.