These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 28035086)
21. First-principles study of thermal and electron-activated dissociation of acetone on Si(001). Lee JH; Lee JY; Cho JH J Chem Phys; 2008 Nov; 129(19):194110. PubMed ID: 19026048 [TBL] [Abstract][Full Text] [Related]
22. Visualization of thermally fluctuating surface structure in noncontact atomic-force microscopy and tip effects on fluctuation: theoretical study of Si(111)-(square root[3] x square root[3])-Ag surface. Sasaki N; Watanabe S; Tsukada M Phys Rev Lett; 2002 Jan; 88(4):046106. PubMed ID: 11801146 [TBL] [Abstract][Full Text] [Related]
23. Models of atomic scale contrast in dissipation images of binary ionic surfaces in non-contact atomic force microscopy. Trevethan T; Kantorovich L Nanotechnology; 2006 Apr; 17(7):S205-12. PubMed ID: 21727416 [TBL] [Abstract][Full Text] [Related]
24. Imaging and manipulation of the Si(100) surface by small-amplitude NC-AFM at zero and very low applied bias. Sweetman A; Danza R; Gangopadhyay S; Moriarty P J Phys Condens Matter; 2012 Feb; 24(8):084009. PubMed ID: 22310449 [TBL] [Abstract][Full Text] [Related]
25. Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research. Altman EI; Baykara MZ; Schwarz UD Acc Chem Res; 2015 Sep; 48(9):2640-8. PubMed ID: 26301490 [TBL] [Abstract][Full Text] [Related]
26. NC-AFM observation of atomic scale structure of rutile-type TiO2(110) surface prepared by wet chemical process. Namai Y; Matsuoka O J Phys Chem B; 2006 Apr; 110(13):6451-3. PubMed ID: 16570940 [TBL] [Abstract][Full Text] [Related]
27. Direct observation of the Si(110)-(16×2) surface reconstruction by atomic force microscopy. Yamamoto T; Izumi R; Miki K; Yamasaki T; Sugawara Y; Li YJ Beilstein J Nanotechnol; 2020; 11():1750-1756. PubMed ID: 33282622 [TBL] [Abstract][Full Text] [Related]
28. 'Sub-atomic' resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study. Campbellová A; Ondráček M; Pou P; Pérez R; Klapetek P; Jelínek P Nanotechnology; 2011 Jul; 22(29):295710. PubMed ID: 21685559 [TBL] [Abstract][Full Text] [Related]
29. Quantitative determination of atomic buckling of silicene by atomic force microscopy. Pawlak R; Drechsel C; D'Astolfo P; Kisiel M; Meyer E; Cerda JI Proc Natl Acad Sci U S A; 2020 Jan; 117(1):228-237. PubMed ID: 31871150 [TBL] [Abstract][Full Text] [Related]
30. Combined AFM and STM measurements of a silicene sheet grown on the Ag(111) surface. Majzik Z; Rachid Tchalala M; Svec M; Hapala P; Enriquez H; Kara A; Mayne AJ; Dujardin G; Jelínek P; Oughaddou H J Phys Condens Matter; 2013 Jun; 25(22):225301. PubMed ID: 23674193 [TBL] [Abstract][Full Text] [Related]
31. Atomically resolved local variation of the barrier height of the flip-flop motion of single buckled dimers of Si(100). Hata K; Sainoo Y; Shigekawa H Phys Rev Lett; 2001 Apr; 86(14):3084-7. PubMed ID: 11290113 [TBL] [Abstract][Full Text] [Related]
32. Atomic-scale sharpening of silicon tips in noncontact atomic force microscopy. Caciuc V; Hölscher H; Blügel S; Fuchs H Phys Rev Lett; 2006 Jan; 96(1):016101. PubMed ID: 16486478 [TBL] [Abstract][Full Text] [Related]
33. Role of tip chemical reactivity on atom manipulation process in dynamic force microscopy. Sugimoto Y; Yurtsever A; Abe M; Morita S; Ondráček M; Pou P; Pérez R; Jelínek P ACS Nano; 2013 Aug; 7(8):7370-6. PubMed ID: 23906095 [TBL] [Abstract][Full Text] [Related]
34. Quantification of atomic-scale elasticity on Ge(001)-c(4 × 2) surfaces via noncontact atomic force microscopy with a tungsten-coated tip. Naitoh Y; Kamijo T; Li YJ; Sugawara Y Phys Rev Lett; 2012 Nov; 109(21):215501. PubMed ID: 23215599 [TBL] [Abstract][Full Text] [Related]
35. p(2x2) phase of buckled dimers of Si(100) observed on n-type substrates below 40 K by scanning tunneling microscopy. Hata K; Yoshida S; Shigekawa H Phys Rev Lett; 2002 Dec; 89(28 Pt 1):286104. PubMed ID: 12513167 [TBL] [Abstract][Full Text] [Related]
36. Theoretical modelling of tip effects in the pushing manipulation of C(60) on the Si(001) surface. Martsinovich N; Kantorovich L Nanotechnology; 2008 Jun; 19(23):235702. PubMed ID: 21825801 [TBL] [Abstract][Full Text] [Related]
37. Atomic-scale mechanical properties of orientated C60 molecules revealed by noncontact atomic force microscopy. Pawlak R; Kawai S; Fremy S; Glatzel T; Meyer E ACS Nano; 2011 Aug; 5(8):6349-54. PubMed ID: 21736339 [TBL] [Abstract][Full Text] [Related]
38. Adsorption of small NaCl clusters on surfaces of silicon nanostructures. Amsler M; Alireza Ghasemi S; Goedecker S; Neelov A; Genovese L Nanotechnology; 2009 Nov; 20(44):445301. PubMed ID: 19801776 [TBL] [Abstract][Full Text] [Related]
39. Non-contact atomic force microscopy study of hydroxyl groups on the spinel MgAl2O4(100) surface. Federici Canova F; Foster AS; Rasmussen MK; Meinander K; Besenbacher F; Lauritsen JV Nanotechnology; 2012 Aug; 23(32):325703. PubMed ID: 22827936 [TBL] [Abstract][Full Text] [Related]
40. Structure and stability of semiconductor tip apexes for atomic force microscopy. Pou P; Ghasemi SA; Jelinek P; Lenosky T; Goedecker S; Perez R Nanotechnology; 2009 Jul; 20(26):264015. PubMed ID: 19509446 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]