These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 28035232)

  • 21. Collecting wild potato species (
    Sotomayor DA; Ellis D; Salas A; Gomez R; Sanchez RA; Carrillo F; Giron C; Quispe V; Manrique-Carpintero NC; Anglin NL; Zorrilla C
    Front Plant Sci; 2023; 14():1044718. PubMed ID: 36794213
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Razzaq A; Saleem F; Wani SH; Abdelmohsen SAM; Alyousef HA; Abdelbacki AMM; Alkallas FH; Tamam N; Elansary HO
    Front Plant Sci; 2021; 12():681367. PubMed ID: 34603347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Community-Level Incentive Mechanisms for the Conservation of Crop Wild Relatives: A Malawi Case Study.
    Drucker AG; Mponya NK; Grazioli F; Maxted N; Brehm JM; Dulloo E
    Plants (Basel); 2023 Feb; 12(5):. PubMed ID: 36903889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reap the crop wild relatives for breeding future crops.
    Bohra A; Kilian B; Sivasankar S; Caccamo M; Mba C; McCouch SR; Varshney RK
    Trends Biotechnol; 2022 Apr; 40(4):412-431. PubMed ID: 34629170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intraspecific diversification of the crop wild relative Brassica cretica Lam. using demographic model selection.
    Kioukis A; Michalopoulou VA; Briers L; Pirintsos S; Studholme DJ; Pavlidis P; Sarris PF
    BMC Genomics; 2020 Jan; 21(1):48. PubMed ID: 31937246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cabo Verde's Poaceae Flora: A Reservoir of Crop Wild Relatives Diversity for Crop Improvement.
    Rocha V; Duarte MC; Catarino S; Duarte I; Romeiras MM
    Front Plant Sci; 2021; 12():630217. PubMed ID: 33633769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Harnessing Crop Wild Diversity for Climate Change Adaptation.
    Cortés AJ; López-Hernández F
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34065368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling of crop wild relative species identifies areas globally for in situ conservation.
    Vincent H; Amri A; Castañeda-Álvarez NP; Dempewolf H; Dulloo E; Guarino L; Hole D; Mba C; Toledo A; Maxted N
    Commun Biol; 2019; 2():136. PubMed ID: 31044161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strategies for utilization of crop wild relatives in plant breeding programs.
    Kashyap A; Garg P; Tanwar K; Sharma J; Gupta NC; Ha PTT; Bhattacharya RC; Mason AS; Rao M
    Theor Appl Genet; 2022 Dec; 135(12):4151-4167. PubMed ID: 36136128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enset in Ethiopia: a poorly characterized but resilient starch staple.
    Borrell JS; Biswas MK; Goodwin M; Blomme G; Schwarzacher T; Heslop-Harrison JSP; Wendawek AM; Berhanu A; Kallow S; Janssens S; Molla EL; Davis AP; Woldeyes F; Willis K; Demissew S; Wilkin P
    Ann Bot; 2019 May; 123(5):747-766. PubMed ID: 30715125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploitation of epigenetic variation of crop wild relatives for crop improvement and agrobiodiversity preservation.
    Varotto S; Krugman T; Aiese Cigliano R; Kashkush K; Kondić-Špika A; Aravanopoulos FA; Pradillo M; Consiglio F; Aversano R; Pecinka A; Miladinović D
    Theor Appl Genet; 2022 Nov; 135(11):3987-4003. PubMed ID: 35678824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes.
    Dwivedi SL; Scheben A; Edwards D; Spillane C; Ortiz R
    Front Plant Sci; 2017; 8():1461. PubMed ID: 28900432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value.
    Zenda T; Liu S; Dong A; Li J; Wang Y; Liu X; Wang N; Duan H
    Front Plant Sci; 2021; 12():774994. PubMed ID: 34925418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global Role of Crop Genomics in the Face of Climate Change.
    Pourkheirandish M; Golicz AA; Bhalla PL; Singh MB
    Front Plant Sci; 2020; 11():922. PubMed ID: 32765541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prospects of Feral Crop De Novo Redomestication.
    Pisias MT; Bakala HS; McAlvay AC; Mabry ME; Birchler JA; Yang B; Pires JC
    Plant Cell Physiol; 2022 Nov; 63(11):1641-1653. PubMed ID: 35639623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in Cereal Crop Genomics for Resilience under Climate Change.
    Zenda T; Liu S; Dong A; Duan H
    Life (Basel); 2021 May; 11(6):. PubMed ID: 34072447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches.
    Haq SAU; Bashir T; Roberts TH; Husaini AM
    Mol Biol Rep; 2023 Dec; 51(1):41. PubMed ID: 38158512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing the conservation of crop wild relatives in England.
    Fielder H; Brotherton P; Hosking J; Hopkins JJ; Ford-Lloyd B; Maxted N
    PLoS One; 2015; 10(6):e0130804. PubMed ID: 26110773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water stress resilient cereal crops: Lessons from wild relatives.
    Toulotte JM; Pantazopoulou CK; Sanclemente MA; Voesenek LACJ; Sasidharan R
    J Integr Plant Biol; 2022 Feb; 64(2):412-430. PubMed ID: 35029029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.