These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
651 related articles for article (PubMed ID: 28035657)
1. A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images. ElTanboly A; Ismail M; Shalaby A; Switala A; El-Baz A; Schaal S; Gimel'farb G; El-Azab M Med Phys; 2017 Mar; 44(3):914-923. PubMed ID: 28035657 [TBL] [Abstract][Full Text] [Related]
2. Precise higher-order reflectivity and morphology models for early diagnosis of diabetic retinopathy using OCT images. Sharafeldeen A; Elsharkawy M; Khalifa F; Soliman A; Ghazal M; AlHalabi M; Yaghi M; Alrahmawy M; Elmougy S; Sandhu HS; El-Baz A Sci Rep; 2021 Feb; 11(1):4730. PubMed ID: 33633139 [TBL] [Abstract][Full Text] [Related]
3. Early diabetic retinopathy diagnosis based on local retinal blood vessel analysis in optical coherence tomography angiography (OCTA) images. Eladawi N; Elmogy M; Khalifa F; Ghazal M; Ghazi N; Aboelfetouh A; Riad A; Sandhu H; Schaal S; El-Baz A Med Phys; 2018 Oct; 45(10):4582-4599. PubMed ID: 30144102 [TBL] [Abstract][Full Text] [Related]
4. A Novel Computer-Aided Diagnostic System for Early Detection of Diabetic Retinopathy Using 3D-OCT Higher-Order Spatial Appearance Model. Elsharkawy M; Sharafeldeen A; Soliman A; Khalifa F; Ghazal M; El-Daydamony E; Atwan A; Sandhu HS; El-Baz A Diagnostics (Basel); 2022 Feb; 12(2):. PubMed ID: 35204552 [TBL] [Abstract][Full Text] [Related]
5. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related]
6. Detection of Diabetic Retinopathy Using Extracted 3D Features from OCT Images. Elgafi M; Sharafeldeen A; Elnakib A; Elgarayhi A; Alghamdi NS; Sallah M; El-Baz A Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298186 [TBL] [Abstract][Full Text] [Related]
7. Automated Diagnosis and Grading of Diabetic Retinopathy Using Optical Coherence Tomography. Sandhu HS; Eltanboly A; Shalaby A; Keynton RS; Schaal S; El-Baz A Invest Ophthalmol Vis Sci; 2018 Jun; 59(7):3155-3160. PubMed ID: 30029278 [TBL] [Abstract][Full Text] [Related]
8. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485 [TBL] [Abstract][Full Text] [Related]
9. Automated Diagnosis of Optical Coherence Tomography Angiography (OCTA) Based on Machine Learning Techniques. Yasser I; Khalifa F; Abdeltawab H; Ghazal M; Sandhu HS; El-Baz A Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336513 [TBL] [Abstract][Full Text] [Related]
10. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
11. Ratiometric analysis of optical coherence tomography-measured in vivo retinal layer thicknesses for the detection of early diabetic retinopathy. Bhaduri B; Shelton RL; Nolan RM; Hendren L; Almasov A; Labriola LT; Boppart SA J Biophotonics; 2017 Nov; 10(11):1430-1441. PubMed ID: 28635102 [TBL] [Abstract][Full Text] [Related]
12. Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study. Sandhu HS; Eladawi N; Elmogy M; Keynton R; Helmy O; Schaal S; El-Baz A Br J Ophthalmol; 2018 Nov; 102(11):1564-1569. PubMed ID: 29363532 [TBL] [Abstract][Full Text] [Related]
13. Diagnostic Accuracy of Digital Retinal Fundus Image Analysis in Detecting Diabetic Maculopathy in Type 2 Diabetes Mellitus. D'Aloisio R; Giglio R; Di Nicola M; De Giacinto C; Pastore MR; Tognetto D; Peto T Ophthalmic Res; 2019; 61(2):100-106. PubMed ID: 30554213 [TBL] [Abstract][Full Text] [Related]
14. Automatic detection of microaneurysms in optical coherence tomography images of retina using convolutional neural networks and transfer learning. Almasi R; Vafaei A; Kazeminasab E; Rabbani H Sci Rep; 2022 Aug; 12(1):13975. PubMed ID: 35978087 [TBL] [Abstract][Full Text] [Related]
15. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy. S K S; P A J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453 [TBL] [Abstract][Full Text] [Related]
16. Automatic blood vessels segmentation based on different retinal maps from OCTA scans. Eladawi N; Elmogy M; Helmy O; Aboelfetouh A; Riad A; Sandhu H; Schaal S; El-Baz A Comput Biol Med; 2017 Oct; 89():150-161. PubMed ID: 28806613 [TBL] [Abstract][Full Text] [Related]
17. Automated Deformation-Based Analysis of 3D Optical Coherence Tomography in Diabetic Retinopathy. Khansari MM; Zhang J; Qiao Y; Gahm JK; Sarabi MS; Kashani AH; Shi Y IEEE Trans Med Imaging; 2020 Jan; 39(1):236-245. PubMed ID: 31247547 [TBL] [Abstract][Full Text] [Related]
18. OctNET: A Lightweight CNN for Retinal Disease Classification from Optical Coherence Tomography Images. A P S; Kar S; S G; Gopi VP; Palanisamy P Comput Methods Programs Biomed; 2021 Mar; 200():105877. PubMed ID: 33339630 [TBL] [Abstract][Full Text] [Related]
19. OCT Hyperreflective Retinal Foci in Diabetic Retinopathy: A Semi-Automatic Detection Comparative Study. Midena E; Torresin T; Velotta E; Pilotto E; Parrozzani R; Frizziero L Front Immunol; 2021; 12():613051. PubMed ID: 33968016 [TBL] [Abstract][Full Text] [Related]
20. Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images. Sun Z; Sun Y J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31111697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]