These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1159 related articles for article (PubMed ID: 28035663)
1. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663 [TBL] [Abstract][Full Text] [Related]
2. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method. Wu S; Weinstein SP; Conant EF; Kontos D Med Phys; 2013 Dec; 40(12):122302. PubMed ID: 24320533 [TBL] [Abstract][Full Text] [Related]
3. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets. Fashandi H; Kuling G; Lu Y; Wu H; Martel AL Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062 [TBL] [Abstract][Full Text] [Related]
4. Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks. Ma X; Wang J; Zheng X; Liu Z; Long W; Zhang Y; Wei J; Lu Y Phys Med Biol; 2020 May; 65(10):105006. PubMed ID: 32155611 [TBL] [Abstract][Full Text] [Related]
5. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM; Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800 [TBL] [Abstract][Full Text] [Related]
6. Development of U-Net Breast Density Segmentation Method for Fat-Sat MR Images Using Transfer Learning Based on Non-Fat-Sat Model. Zhang Y; Chan S; Chen JH; Chang KT; Lin CY; Pan HB; Lin WC; Kwong T; Parajuli R; Mehta RS; Chien SH; Su MY J Digit Imaging; 2021 Aug; 34(4):877-887. PubMed ID: 34244879 [TBL] [Abstract][Full Text] [Related]
7. Automatic Breast and Fibroglandular Tissue Segmentation in Breast MRI Using Deep Learning by a Fully-Convolutional Residual Neural Network U-Net. Zhang Y; Chen JH; Chang KT; Park VY; Kim MJ; Chan S; Chang P; Chow D; Luk A; Kwong T; Su MY Acad Radiol; 2019 Nov; 26(11):1526-1535. PubMed ID: 30713130 [TBL] [Abstract][Full Text] [Related]
8. Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images. Huo L; Hu X; Xiao Q; Gu Y; Chu X; Jiang L Magn Reson Imaging; 2021 Oct; 82():31-41. PubMed ID: 34147598 [TBL] [Abstract][Full Text] [Related]
9. Fully Automatic Assessment of Background Parenchymal Enhancement on Breast MRI Using Machine-Learning Models. Nam Y; Park GE; Kang J; Kim SH J Magn Reson Imaging; 2021 Mar; 53(3):818-826. PubMed ID: 33219624 [TBL] [Abstract][Full Text] [Related]
10. Knowledge-based and deep learning-based automated chest wall segmentation in magnetic resonance images of extremely dense breasts. Verburg E; Wolterink JM; de Waard SN; Išgum I; van Gils CH; Veldhuis WB; Gilhuijs KGA Med Phys; 2019 Oct; 46(10):4405-4416. PubMed ID: 31274194 [TBL] [Abstract][Full Text] [Related]
11. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images. Caballo M; Boone JM; Mann R; Sechopoulos I Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025 [TBL] [Abstract][Full Text] [Related]
12. Fully automatic quantification of fibroglandular tissue and background parenchymal enhancement with accurate implementation for axial and sagittal breast MRI protocols. Wei D; Jahani N; Cohen E; Weinstein S; Hsieh MK; Pantalone L; Kontos D Med Phys; 2021 Jan; 48(1):238-252. PubMed ID: 33150617 [TBL] [Abstract][Full Text] [Related]
13. Localized-atlas-based segmentation of breast MRI in a decision-making framework. Fooladivanda A; Shokouhi SB; Ahmadinejad N Australas Phys Eng Sci Med; 2017 Mar; 40(1):69-84. PubMed ID: 28116639 [TBL] [Abstract][Full Text] [Related]
14. Comparison of 3-point Dixon imaging and fuzzy C-means clustering methods for breast density measurement. Clendenen TV; Zeleniuch-Jacquotte A; Moy L; Pike MC; Rusinek H; Kim S J Magn Reson Imaging; 2013 Aug; 38(2):474-81. PubMed ID: 23292922 [TBL] [Abstract][Full Text] [Related]
15. Fully automated segmentation of whole breast using dynamic programming in dynamic contrast enhanced MR images. Jiang L; Hu X; Xiao Q; Gu Y; Li Q Med Phys; 2017 Jun; 44(6):2400-2414. PubMed ID: 28375584 [TBL] [Abstract][Full Text] [Related]
16. Clinical applicability and relevance of fibroglandular tissue segmentation on routine T1 weighted breast MRI. Pujara AC; Mikheev A; Rusinek H; Rallapalli H; Walczyk J; Gao Y; Chhor C; Pysarenko K; Babb JS; Melsaether AN Clin Imaging; 2017; 42():119-125. PubMed ID: 27951458 [TBL] [Abstract][Full Text] [Related]
17. A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction. Ballanger B; Tremblay L; Sgambato-Faure V; Beaudoin-Gobert M; Lavenne F; Le Bars D; Costes N Neuroimage; 2013 Aug; 77():26-43. PubMed ID: 23537938 [TBL] [Abstract][Full Text] [Related]
18. Quantitative Volumetric K-Means Cluster Segmentation of Fibroglandular Tissue and Skin in Breast MRI. Niukkanen A; Arponen O; Nykänen A; Masarwah A; Sutela A; Liimatainen T; Vanninen R; Sudah M J Digit Imaging; 2018 Aug; 31(4):425-434. PubMed ID: 29047034 [TBL] [Abstract][Full Text] [Related]
19. Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images. Wu S; Weinstein SP; Conant EF; Schnall MD; Kontos D Med Phys; 2013 Apr; 40(4):042301. PubMed ID: 23556914 [TBL] [Abstract][Full Text] [Related]
20. U-Net breast lesion segmentations for breast dynamic contrast-enhanced magnetic resonance imaging. Douglas L; Bhattacharjee R; Fuhrman J; Drukker K; Hu Q; Edwards A; Sheth D; Giger M J Med Imaging (Bellingham); 2023 Nov; 10(6):064502. PubMed ID: 37990686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]