These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1159 related articles for article (PubMed ID: 28035663)

  • 21. Breast segmentation and density estimation in breast MRI: a fully automatic framework.
    Gubern-Mérida A; Kallenberg M; Mann RM; Martí R; Karssemeijer N
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):349-57. PubMed ID: 25561456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Logistic Regression-Based Model Is More Efficient Than U-Net Model for Reliable Whole Brain Magnetic Resonance Imaging Segmentation.
    Dieckhaus H; Meijboom R; Okar S; Wu T; Parvathaneni P; Mina Y; Chandran S; Waldman AD; Reich DS; Nair G
    Top Magn Reson Imaging; 2022 Jun; 31(3):31-39. PubMed ID: 35767314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility.
    Li X; Chen L; Kutten K; Ceritoglu C; Li Y; Kang N; Hsu JT; Qiao Y; Wei H; Liu C; Miller MI; Mori S; Yousem DM; van Zijl PCM; Faria AV
    Neuroimage; 2019 May; 191():337-349. PubMed ID: 30738207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A multi-atlas based method for automated anatomical rat brain MRI segmentation and extraction of PET activity.
    Lancelot S; Roche R; Slimen A; Bouillot C; Levigoureux E; Langlois JB; Zimmer L; Costes N
    PLoS One; 2014; 9(10):e109113. PubMed ID: 25330005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A publicly available deep learning model and dataset for segmentation of breast, fibroglandular tissue, and vessels in breast MRI.
    Lew CO; Harouni M; Kirksey ER; Kang EJ; Dong H; Gu H; Grimm LJ; Walsh R; Lowell DA; Mazurowski MA
    Sci Rep; 2024 Mar; 14(1):5383. PubMed ID: 38443410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods.
    Hofmann M; Bezrukov I; Mantlik F; Aschoff P; Steinke F; Beyer T; Pichler BJ; Schölkopf B
    J Nucl Med; 2011 Sep; 52(9):1392-9. PubMed ID: 21828115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region.
    Arabi H; Dowling JA; Burgos N; Han X; Greer PB; Koutsouvelis N; Zaidi H
    Med Phys; 2018 Nov; 45(11):5218-5233. PubMed ID: 30216462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement.
    Ha R; Chang P; Mema E; Mutasa S; Karcich J; Wynn RT; Liu MZ; Jambawalikar S
    J Digit Imaging; 2019 Feb; 32(1):141-147. PubMed ID: 30076489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images.
    Yang YX; Chong MS; Tay L; Yew S; Yeo A; Tan CH
    MAGMA; 2016 Oct; 29(5):723-31. PubMed ID: 27026244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods.
    Shahedi M; Cool DW; Romagnoli C; Bauman GS; Bastian-Jordan M; Gibson E; Rodrigues G; Ahmad B; Lock M; Fenster A; Ward AD
    Med Phys; 2014 Nov; 41(11):113503. PubMed ID: 25370674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques.
    Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L
    Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SU-E-I-70: Semi-Automatic, User-Driven Breast, Chest Wall and FGT Segmentations Based on Hough Transform, Morphology Tools and Histogram Technology.
    Wang Y; Deasy J
    Med Phys; 2012 Jun; 39(6Part5):3641. PubMed ID: 28517626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated segmentation of the human supraclavicular fat depot via deep neural network in water-fat separated magnetic resonance images.
    Zhao Y; Tang C; Cui B; Somasundaram A; Raspe J; Hu X; Holzapfel C; Junker D; Hauner H; Menze B; Wu M; Karampinos D
    Quant Imaging Med Surg; 2023 Jul; 13(7):4699-4715. PubMed ID: 37456284
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Technical Note: A deep learning-based autosegmentation of rectal tumors in MR images.
    Wang J; Lu J; Qin G; Shen L; Sun Y; Ying H; Zhang Z; Hu W
    Med Phys; 2018 Jun; 45(6):2560-2564. PubMed ID: 29663417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated breast-region segmentation in the axial breast MR images.
    Milenković J; Chambers O; Marolt Mušič M; Tasič JF
    Comput Biol Med; 2015 Jul; 62():55-64. PubMed ID: 25912987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supervised machine learning-based classification scheme to segment the brainstem on MRI in multicenter brain tumor treatment context.
    Dolz J; Laprie A; Ken S; Leroy HA; Reyns N; Massoptier L; Vermandel M
    Int J Comput Assist Radiol Surg; 2016 Jan; 11(1):43-51. PubMed ID: 26206715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of fat-water separation and spatial resolution on automated volumetric MRI measurements of fibroglandular breast tissue.
    Wengert GJ; Pinker-Domenig K; Helbich TH; Vogl WD; Clauser P; Bickel H; Marino MA; Magometschnigg HF; Baltzer PA
    NMR Biomed; 2016 Jun; 29(6):702-8. PubMed ID: 27061174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
    Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD
    Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 58.