These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Effects of Electrode Diameter and Contact Material on Signal Morphology of Gastric Bioelectrical Slow Wave Recordings. Kamat AA; Paskaranandavadivel N; Alighaleh S; Cheng LK; Angeli TR Ann Biomed Eng; 2020 Apr; 48(4):1407-1418. PubMed ID: 31980997 [TBL] [Abstract][Full Text] [Related]
7. In vivo experimental validation of detection of gastric slow waves using a flexible multichannel electrogastrography sensor linear array. Sukasem A; Calder S; Angeli-Gordon TR; Andrews CN; O'Grady G; Gharibans A; Du P Biomed Eng Online; 2022 Jun; 21(1):43. PubMed ID: 35761323 [TBL] [Abstract][Full Text] [Related]
8. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping. Egbuji JU; O'Grady G; Du P; Cheng LK; Lammers WJ; Windsor JA; Pullan AJ Neurogastroenterol Motil; 2010 Oct; 22(10):e292-300. PubMed ID: 20618830 [TBL] [Abstract][Full Text] [Related]
9. What can be measured from surface electrogastrography. Computer simulations. Liang J; Chen JD Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026 [TBL] [Abstract][Full Text] [Related]
10. Intra-operative high-resolution mapping of slow wave propagation in the human jejunum: Feasibility and initial results. Angeli TR; O'Grady G; Vather R; Bissett IP; Cheng LK Neurogastroenterol Motil; 2018 Jul; 30(7):e13310. PubMed ID: 29493080 [TBL] [Abstract][Full Text] [Related]
11. Targeted ablation of gastric pacemaker sites to modulate patterns of bioelectrical slow wave activation and propagation in an anesthetized pig model. Aghababaie Z; Cheng LK; Paskaranandavadivel N; Avci R; Chan CA; Matthee A; Amirapu S; Asirvatham SJ; Farrugia G; Beyder A; O'Grady G; Angeli-Gordon TR Am J Physiol Gastrointest Liver Physiol; 2022 Apr; 322(4):G431-G445. PubMed ID: 35137624 [TBL] [Abstract][Full Text] [Related]
15. Determining the efficient inter-electrode distance for high-resolution mapping using a mathematical model of human gastric dysrhythmias. Putney J; O'Grady G; Angeli TR; Paskaranandavadivel N; Cheng LK; Erickson JC; Peng Du Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1448-51. PubMed ID: 26736542 [TBL] [Abstract][Full Text] [Related]
16. Surface current density mapping for identification of gastric slow wave propagation. Bradshaw LA; Cheng LK; Richards WO; Pullan AJ IEEE Trans Biomed Eng; 2009 Aug; 56(8):2131-9. PubMed ID: 19403355 [TBL] [Abstract][Full Text] [Related]
17. High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia. O'Grady G; Egbuji JU; Du P; Lammers WJ; Cheng LK; Windsor JA; Pullan AJ Neurogastroenterol Motil; 2011 Sep; 23(9):e345-55. PubMed ID: 21714831 [TBL] [Abstract][Full Text] [Related]
18. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Du P; O'Grady G; Egbuji JU; Lammers WJ; Budgett D; Nielsen P; Windsor JA; Pullan AJ; Cheng LK Ann Biomed Eng; 2009 Apr; 37(4):839-46. PubMed ID: 19224368 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Electrophysiological Propagation by Multichannel Sensors. Bradshaw LA; Kim JH; Somarajan S; Richards WO; Cheng LK IEEE Trans Biomed Eng; 2016 Aug; 63(8):1751-9. PubMed ID: 26595907 [TBL] [Abstract][Full Text] [Related]
20. Comparison of gold and PEDOT:PSS contacts for high-resolution gastric electrical mapping using flexible printed circuit arrays. Zhang P; Travas-Sejdic J; O'Grady G; Du P Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6937-6940. PubMed ID: 34892699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]