These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 28035789)

  • 1. Lewis Acid-Base Interaction-Controlled ortho-Selective C-H Borylation of Aryl Sulfides.
    Li HL; Kuninobu Y; Kanai M
    Angew Chem Int Ed Engl; 2017 Feb; 56(6):1495-1499. PubMed ID: 28035789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iridium-Catalyzed
    Zeng J; Naito M; Torigoe T; Yamanaka M; Kuninobu Y
    Org Lett; 2020 May; 22(9):3485-3489. PubMed ID: 32323992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.
    Hartwig JF
    Acc Chem Res; 2012 Jun; 45(6):864-73. PubMed ID: 22075137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iridium/Bipyridine-Catalyzed ortho-Selective C-H Borylation of Phenol and Aniline Derivatives.
    Li HL; Kanai M; Kuninobu Y
    Org Lett; 2017 Nov; 19(21):5944-5947. PubMed ID: 29043817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. meta-Selective C-H Borylation of Benzamides and Pyridines by an Iridium-Lewis Acid Bifunctional Catalyst.
    Yang L; Uemura N; Nakao Y
    J Am Chem Soc; 2019 May; 141(19):7972-7979. PubMed ID: 31017408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regioselective borylation of the C-H bonds in alkylamines and alkyl ethers. Observation and origin of high reactivity of primary C-H bonds beta to nitrogen and oxygen.
    Li Q; Liskey CW; Hartwig JF
    J Am Chem Soc; 2014 Jun; 136(24):8755-65. PubMed ID: 24836159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen Bond Directed ortho-Selective C-H Borylation of Secondary Aromatic Amides.
    Bai ST; Bheeter CB; Reek JNH
    Angew Chem Int Ed Engl; 2019 Sep; 58(37):13039-13043. PubMed ID: 31237988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iridium-Catalyzed Regioselective Borylation through C-H Activation and the Origin of Ligand-Dependent Regioselectivity Switching.
    Unnikrishnan A; Sunoj RB
    J Org Chem; 2021 Nov; 86(21):15618-15630. PubMed ID: 34598435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-Catalyzed ortho-Selective C-H Borylation of 2-Phenylpyridines and Their Analogs.
    Yoshigoe Y; Kuninobu Y
    Org Lett; 2017 Jul; 19(13):3450-3453. PubMed ID: 28653540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iridium-Catalyzed ortho-Selective Borylation of Aromatic Amides Enabled by 5-Trifluoromethylated Bipyridine Ligands.
    Marcos-Atanes D; Vidal C; Navo CD; Peccati F; Jiménez-Osés G; Mascareñas JL
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202214510. PubMed ID: 36602092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repurposing a supramolecular iridium catalyst
    Trouvé J; Delahaye V; Tomasini M; Rajeshwaran P; Roisnel T; Poater A; Gramage-Doria R
    Chem Sci; 2024 Jul; 15(30):11794-11806. PubMed ID: 39092112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iridium-catalyzed ortho-selective C-H silylation of aromatic compounds directed toward the synthesis of π-conjugated molecules with Lewis acid-base interaction.
    Wakaki T; Kanai M; Kuninobu Y
    Org Lett; 2015 Apr; 17(7):1758-61. PubMed ID: 25800655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfur-Directed Ligand-Free C-H Borylation by Iridium Catalysis.
    Liu L; Wang G; Jiao J; Li P
    Org Lett; 2017 Nov; 19(22):6132-6135. PubMed ID: 29111752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic study of the ligand controlled regioselectivity in iridium catalyzed C-H borylation of aromatic imines.
    Liu Y; Chen J; Zhan K; Shen Y; Gao H; Yao L
    RSC Adv; 2018 Oct; 8(62):35453-35460. PubMed ID: 35547887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A meta-selective C-H borylation directed by a secondary interaction between ligand and substrate.
    Kuninobu Y; Ida H; Nishi M; Kanai M
    Nat Chem; 2015 Sep; 7(9):712-7. PubMed ID: 26291942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational understanding of catalyst-controlled borylation of fluoroarenes: directed
    Liu YH; Jiang ZJ
    RSC Adv; 2020 May; 10(33):19562-19569. PubMed ID: 35515481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemoselective Coupling of 1,1-Bis[(pinacolato)boryl]alkanes for the Transition-Metal-Free Borylation of Aryl and Vinyl Halides: A Combined Experimental and Theoretical Investigation.
    Lee Y; Baek SY; Park J; Kim ST; Tussupbayev S; Kim J; Baik MH; Cho SH
    J Am Chem Soc; 2017 Jan; 139(2):976-984. PubMed ID: 27973774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ir-Catalyzed Ligand-Free Directed C-H Borylation of Arenes and Pharmaceuticals: Detailed Mechanistic Understanding.
    Mahamudul Hassan MM; Mondal B; Singh S; Haldar C; Chaturvedi J; Bisht R; Sunoj RB; Chattopadhyay B
    J Org Chem; 2022 Mar; 87(6):4360-4375. PubMed ID: 35253428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regioselective borylation of porphyrins by C-H bond activation under iridium catalysis to afford useful building blocks for porphyrin assemblies.
    Hata H; Yamaguchi S; Mori G; Nakazono S; Katoh T; Takatsu K; Hiroto S; Shinokubo H; Osuka A
    Chem Asian J; 2007 Jul; 2(7):849-59. PubMed ID: 17539042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remarkably Efficient Iridium Catalysts for Directed C(sp
    Hoque ME; Hassan MMM; Chattopadhyay B
    J Am Chem Soc; 2021 Apr; 143(13):5022-5037. PubMed ID: 33783196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.