These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 28035792)

  • 1. Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis.
    Alazzam A; Mathew B; Alhammadi F
    J Sep Sci; 2017 Mar; 40(5):1193-1200. PubMed ID: 28035792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells.
    Waheed W; Alazzam A; Mathew B; Christoforou N; Abu-Nada E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1087-1088():133-137. PubMed ID: 29734073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis.
    Alazzam A; Stiharu I; Bhat R; Meguerditchian AN
    Electrophoresis; 2011 Jun; 32(11):1327-36. PubMed ID: 21500214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lab-on-chip for liquid biopsy (LoC-LB) based on dielectrophoresis.
    Mathew B; Alazzam A; Khashan S; Abutayeh M
    Talanta; 2017 Mar; 164():608-611. PubMed ID: 28107980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of a microfluidic device employing dielectrophoresis for liquid biopsy.
    Alnaimat F; Mathew B; Alazzam A
    Med Eng Phys; 2020 Jul; 81():130-135. PubMed ID: 32507676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation and analysis of geometric parameters based on Taguchi method in Y-Y microfluidic device for circulating tumor cell separation by alternating current dielectrophoresis.
    Lv B; Cai J
    J Chromatogr A; 2023 Mar; 1693():463894. PubMed ID: 36854211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A continuous flow microfluidic device based on contactless dielectrophoresis for bioparticles enrichment.
    Rahmani A; Mohammadi A; Kalhor HR
    Electrophoresis; 2018 Feb; 39(3):445-455. PubMed ID: 28944476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing cell separation in a hybrid spiral dielectrophoretic microchannel: Numerical insights and optimal operating conditions.
    Uddin MR; Chen X
    Biotechnol Prog; 2024; 40(3):e3437. PubMed ID: 38289677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoresis-based 3D-focusing of microscale entities in microfluidic devices.
    Alnaimat F; Ramesh S; Alazzam A; Hilal-Alnaqbi A; Waheed W; Mathew B
    Cytometry A; 2018 Aug; 93(8):811-821. PubMed ID: 30160818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance detection integrated with dielectrophoresis enrichment platform for lung circulating tumor cells in a microfluidic channel.
    Nguyen NV; Jen CP
    Biosens Bioelectron; 2018 Dec; 121():10-18. PubMed ID: 30189335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous On-Chip Cell Separation Based on Conductivity-Induced Dielectrophoresis with 3D Self-Assembled Ionic Liquid Electrodes.
    Sun M; Agarwal P; Zhao S; Zhao Y; Lu X; He X
    Anal Chem; 2016 Aug; 88(16):8264-71. PubMed ID: 27409352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-cost, high-throughput and rapid-prototyped 3D-integrated dielectrophoretic channels for continuous cell enrichment and separation.
    Faraghat SA; Fatoyinbo HO; Hoettges KF; Hughes MP
    Electrophoresis; 2023 Jun; 44(11-12):947-955. PubMed ID: 36409835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization.
    Zahedi Siani O; Zabetian Targhi M; Sojoodi M; Movahedin M
    Bioprocess Biosyst Eng; 2020 Sep; 43(9):1573-1586. PubMed ID: 32328730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation.
    Khan M; Chen X
    Electrophoresis; 2022 Apr; 43(7-8):879-891. PubMed ID: 35015306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new microfluidic device for separating circulating tumor cells based on their physical properties by using electrophoresis and dielectrophoresis forces within an electrical field.
    Dabighi A; Toghraie D
    Comput Methods Programs Biomed; 2020 Mar; 185():105147. PubMed ID: 31669960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screen-printed microfluidic dielectrophoresis chip for cell separation.
    Zhu H; Lin X; Su Y; Dong H; Wu J
    Biosens Bioelectron; 2015 Jan; 63():371-378. PubMed ID: 25127471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A discrete dielectrophoresis device for the separation of malaria-infected cells.
    Panklang N; Techaumnat B; Wisitsoraat A; Putaporntip C; Chotivanich K; Suzuki Y
    Electrophoresis; 2022 Jun; 43(12):1347-1356. PubMed ID: 35338790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.