These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 28035804)
1. Preparation of Polymer@AuNPs with Droplets Approach for Sensing Serum Copper Ions. Qiao J; Ding H; Liu Q; Zhang R; Qi L Anal Chem; 2017 Feb; 89(3):2080-2085. PubMed ID: 28035804 [TBL] [Abstract][Full Text] [Related]
2. Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes. Wang Y; Yang F; Yang X Nanotechnology; 2010 May; 21(20):205502. PubMed ID: 20418604 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of ficin-protected AuNCs in a droplet-based microreactor for sensing serum ferric ions. Wu H; Qiao J; Hwang YH; Xu C; Yu T; Zhang R; Cai H; Kim DP; Qi L Talanta; 2019 Aug; 200():547-552. PubMed ID: 31036221 [TBL] [Abstract][Full Text] [Related]
4. A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles. Hormozi-Nezhad MR; Abbasi-Moayed S Talanta; 2014 Nov; 129():227-32. PubMed ID: 25127588 [TBL] [Abstract][Full Text] [Related]
5. Direct colorimetric biosensing of mercury(II) ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles. Guan H; Liu X; Wang W; Liang J Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():527-32. PubMed ID: 24291429 [TBL] [Abstract][Full Text] [Related]
6. Poly(N-isopropylacrylamide)-stabilized gold nanoparticles in combination with tricationic branched phenylene-ethynylene fluorophore for protein identification. Kusolkamabot K; Sae-ung P; Niamnont N; Wongravee K; Sukwattanasinitt M; Hoven VP Langmuir; 2013 Oct; 29(39):12317-27. PubMed ID: 23968302 [TBL] [Abstract][Full Text] [Related]
7. A simple "clickable" biosensor for colorimetric detection of copper(II) ions based on unmodified gold nanoparticles. Shen Q; Li W; Tang S; Hu Y; Nie Z; Huang Y; Yao S Biosens Bioelectron; 2013 Mar; 41():663-8. PubMed ID: 23089325 [TBL] [Abstract][Full Text] [Related]
8. Unmodified gold nanoparticles as a simple colorimetric probe for ramoplanin detection. Teepoo S; Chumsaeng P; Palasak K; Bousod N; Mhadbamrung N; Sae-lim P Talanta; 2013 Dec; 117():518-22. PubMed ID: 24209375 [TBL] [Abstract][Full Text] [Related]
9. Cu(Ⅱ) triggering redox-regulated anti-aggregation of gold nanoparticles for ultrasensitive visual sensing of iodide. Peng R; He H; Wang Q; Yan X; Yu Q; Qin H; Lei Y; Luo L; Feng Y Anal Chim Acta; 2018 Dec; 1036():147-152. PubMed ID: 30253825 [TBL] [Abstract][Full Text] [Related]
10. Ligands dissociation induced gold nanoparticles aggregation for colorimetric Al Luo X; Xie X; Meng Y; Sun T; Ding J; Zhou W Anal Chim Acta; 2019 Dec; 1087():76-85. PubMed ID: 31585569 [TBL] [Abstract][Full Text] [Related]
11. Sensitive colorimetric detection of K(I) using catalytically active gold nanoparticles triggered signal amplification. Chen Z; Tan L; Wang S; Zhang Y; Li Y Biosens Bioelectron; 2016 May; 79():749-57. PubMed ID: 26774090 [TBL] [Abstract][Full Text] [Related]
12. A novel route to copper(II) detection using 'click' chemistry-induced aggregation of gold nanoparticles. Hua C; Zhang WH; De Almeida SR; Ciampi S; Gloria D; Liu G; Harper JB; Gooding JJ Analyst; 2012 Jan; 137(1):82-6. PubMed ID: 21975428 [TBL] [Abstract][Full Text] [Related]
13. Biothiols as chelators for preparation of N-(aminobutyl)-N-(ethylisoluminol)/Cu(2+) complexes bifunctionalized gold nanoparticles and sensitive sensing of pyrophosphate ion. Li F; Liu Y; Zhuang M; Zhang H; Liu X; Cui H ACS Appl Mater Interfaces; 2014 Oct; 6(20):18104-11. PubMed ID: 25275558 [TBL] [Abstract][Full Text] [Related]
14. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions. Li B; Du Y; Dong S Anal Chim Acta; 2009 Jun; 644(1-2):78-82. PubMed ID: 19463566 [TBL] [Abstract][Full Text] [Related]
15. Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles. Chen Z; Huang Y; Li X; Zhou T; Ma H; Qiang H; Liu Y Anal Chim Acta; 2013 Jul; 787():189-92. PubMed ID: 23830438 [TBL] [Abstract][Full Text] [Related]
16. Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles. Zhang M; Liu YQ; Ye BC Analyst; 2012 Feb; 137(3):601-7. PubMed ID: 22158918 [TBL] [Abstract][Full Text] [Related]
17. Simple Colorimetric Detection of Amyloid β-peptide (1-40) based on Aggregation of Gold Nanoparticles in the Presence of Copper Ions. Zhou Y; Dong H; Liu L; Xu M Small; 2015 May; 11(18):2144-9. PubMed ID: 25641831 [TBL] [Abstract][Full Text] [Related]
18. Amino acid-mediated 'turn-off/turn-on' nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Liu Y; Ding D; Zhen Y; Guo R Biosens Bioelectron; 2017 Jun; 92():140-146. PubMed ID: 28213326 [TBL] [Abstract][Full Text] [Related]
19. Colorimetric detection of melamine in milk based on Triton X-100 modified gold nanoparticles and its paper-based application. Gao N; Huang P; Wu F Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():174-180. PubMed ID: 29136582 [TBL] [Abstract][Full Text] [Related]
20. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Chen GH; Chen WY; Yen YC; Wang CW; Chang HT; Chen CF Anal Chem; 2014 Jul; 86(14):6843-9. PubMed ID: 24932699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]