BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28036094)

  • 1. Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos.
    Chen Y; Trinh LA; Fingler J; Fraser SE
    J Biomed Opt; 2016 Dec; 21(12):126022. PubMed ID: 28036094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamic flow visualization of early embryonic great vessels using μPIV.
    Goktas S; Chen CY; Kowalski WJ; Pekkan K
    Methods Mol Biol; 2015; 1189():17-30. PubMed ID: 25245684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging and graphing of cortical vasculature using dynamically focused optical coherence microscopy angiography.
    Leahy C; Radhakrishnan H; Bernucci M; Srinivasan VJ
    J Biomed Opt; 2016 Feb; 21(2):20502. PubMed ID: 26882447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos.
    Kagemann L; Ishikawa H; Zou J; Charukamnoetkanok P; Wollstein G; Townsend KA; Gabriele ML; Bahary N; Wei X; Fujimoto JG; Schuman JS
    Mol Vis; 2008; 14():2157-70. PubMed ID: 19052656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development.
    Isogai S; Horiguchi M; Weinstein BM
    Dev Biol; 2001 Feb; 230(2):278-301. PubMed ID: 11161578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging.
    Wu C; Sudheendran N; Singh M; Larina IV; Dickinson ME; Larin KV
    J Biomed Opt; 2016 Feb; 21(2):26002. PubMed ID: 26848543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish.
    Correia T; Lockwood N; Kumar S; Yin J; Ramel MC; Andrews N; Katan M; Bugeon L; Dallman MJ; McGinty J; Frankel P; French PM; Arridge S
    PLoS One; 2015; 10(8):e0136213. PubMed ID: 26308086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction and representation of caudal vasculature of zebrafish embryo from confocal scanning laser fluorescence microscopic images.
    Feng J; Cheng SH; Chan PK; Ip HH
    Comput Biol Med; 2005 Dec; 35(10):915-31. PubMed ID: 16263106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy.
    Wan S; Lee HC; Huang X; Xu T; Xu T; Zeng X; Zhang Z; Sheikine Y; Connolly JL; Fujimoto JG; Zhou C
    Med Image Anal; 2017 May; 38():104-116. PubMed ID: 28327449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative optical coherence microscopy for the in situ investigation of the biofilm.
    Meleppat RK; Shearwood C; Keey SL; Matham MV
    J Biomed Opt; 2016 Dec; 21(12):127002. PubMed ID: 27936266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodality endoscopic optical coherence tomography and fluorescence imaging technology for visualization of layered architecture and subsurface microvasculature.
    Li Y; Jing J; Yu J; Zhang B; Huo T; Yang Q; Chen Z
    Opt Lett; 2018 May; 43(9):2074-2077. PubMed ID: 29714749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated image-based phenotypic analysis in zebrafish embryos.
    Vogt A; Cholewinski A; Shen X; Nelson SG; Lazo JS; Tsang M; Hukriede NA
    Dev Dyn; 2009 Mar; 238(3):656-63. PubMed ID: 19235725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free cell-based assay with spectral-domain optical coherence phase microscopy.
    Ryu S; Hyun KA; Heo J; Jung HI; Joo C
    J Biomed Opt; 2014 Apr; 19(4):046003. PubMed ID: 24711152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit.
    Xu J; Wong K; Jian Y; Sarunic MV
    J Biomed Opt; 2014 Feb; 19(2):026001. PubMed ID: 24503636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography.
    Bouwens A; Szlag D; Szkulmowski M; Bolmont T; Wojtkowski M; Lasser T
    Opt Express; 2013 Jul; 21(15):17711-29. PubMed ID: 23938644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging blood vessels and lymphatic vessels in the zebrafish.
    Jung HM; Isogai S; Kamei M; Castranova D; Gore AV; Weinstein BM
    Methods Cell Biol; 2016; 133():69-103. PubMed ID: 27263409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vivo 3D imaging of Zebrafish's intersegmental vessel development by a bi-directional light-sheet illumination microscope.
    Qin X; Chen C; Wang L; Chen X; Liang Y; Jin X; Pan W; Liu Z; Li H; Yang G
    Biochem Biophys Res Commun; 2021 Jun; 557():8-13. PubMed ID: 33857842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence tomography imaging of early quail embryos.
    Gu S; Jenkins MW; Watanabe M; Rollins AM
    Cold Spring Harb Protoc; 2011 Feb; 2011(2):pdb.prot5564. PubMed ID: 21285264
    [No Abstract]   [Full Text] [Related]  

  • 19. Development of automated imaging and analysis for zebrafish chemical screens.
    Vogt A; Codore H; Day BW; Hukriede NA; Tsang M
    J Vis Exp; 2010 Jun; (40):. PubMed ID: 20613708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography.
    Zarnescu L; Leung MC; Abeyta M; Sudkamp H; Baer T; Behr B; Ellerbee AK
    J Biomed Opt; 2015 Sep; 20(9):096004. PubMed ID: 26334977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.