BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

743 related articles for article (PubMed ID: 28036151)

  • 1. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators.
    Wei R; Parsons SP; Huizinga JD
    Exp Physiol; 2017 Mar; 102(3):329-346. PubMed ID: 28036151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor patterns of the small intestine explained by phase-amplitude coupling of two pacemaker activities: the critical importance of propagation velocity.
    Huizinga JD; Parsons SP; Chen JH; Pawelka A; Pistilli M; Li C; Yu Y; Ye P; Liu Q; Tong M; Zhu YF; Wei D
    Am J Physiol Cell Physiol; 2015 Sep; 309(6):C403-14. PubMed ID: 26135802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow wave contraction frequency plateaux in the small intestine are composed of discrete waves of interval increase associated with dislocations.
    Parsons SP; Huizinga JD
    Exp Physiol; 2018 Aug; 103(8):1087-1100. PubMed ID: 29860720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Noise in Coupling Strength and Natural Frequency within a Pacemaker Network; Consequences for Development of Intestinal Motor Patterns According to a Weakly Coupled Phase Oscillator Model.
    Parsons SP; Huizinga JD
    Front Neurosci; 2016; 10():19. PubMed ID: 26869875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A myogenic motor pattern in mice lacking myenteric interstitial cells of Cajal explained by a second coupled oscillator network.
    Parsons SP; Huizinga JD
    Am J Physiol Gastrointest Liver Physiol; 2020 Feb; 318(2):G225-G243. PubMed ID: 31813235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation and propagation of gastric slow waves.
    van Helden DF; Laver DR; Holdsworth J; Imtiaz MS
    Clin Exp Pharmacol Physiol; 2010 Apr; 37(4):516-24. PubMed ID: 19930430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of pacemaker activity and interstitial cells of Cajal in the neonatal mouse small intestine.
    Liu LW; Thuneberg L; Huizinga JD
    Dev Dyn; 1998 Nov; 213(3):271-82. PubMed ID: 9825863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifting into high gear: how interstitial cells of Cajal change the motility pattern of the developing intestine.
    Chevalier NR; Ammouche Y; Gomis A; Teyssaire C; de Santa Barbara P; Faure S
    Am J Physiol Gastrointest Liver Physiol; 2020 Oct; 319(4):G519-G528. PubMed ID: 32877218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory.
    Parsons SP; Huizinga JD
    Am J Physiol Gastrointest Liver Physiol; 2015 Feb; 308(4):G287-97. PubMed ID: 25501550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulus-induced pacemaker activity in interstitial cells of Cajal associated with the deep muscular plexus of the small intestine.
    Zhu YF; Wang XY; Parsons SP; Huizinga JD
    Neurogastroenterol Motil; 2016 Jul; 28(7):1064-74. PubMed ID: 26968691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of contractions in the small intestine indicate desynchronization via supercritical Andronov-Hopf bifurcation.
    Parsons SP; Huizinga JD
    Sci Rep; 2020 Sep; 10(1):15099. PubMed ID: 32934308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phase response and state space of slow wave contractions in the small intestine.
    Parsons SP; Huizinga JD
    Exp Physiol; 2017 Sep; 102(9):1118-1132. PubMed ID: 28671737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of anoctamin 1 calcium-activated chloride channels as pacemaker channels in interstitial cells of Cajal.
    Lees-Green R; Gibbons SJ; Farrugia G; Sneyd J; Cheng LK
    Am J Physiol Gastrointest Liver Physiol; 2014 Apr; 306(8):G711-27. PubMed ID: 24481603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstitial cells of cajal and inflammation-induced motor dysfunction in the mouse small intestine.
    Der T; Bercik P; Donnelly G; Jackson T; Berezin I; Collins SM; Huizinga JD
    Gastroenterology; 2000 Dec; 119(6):1590-9. PubMed ID: 11113080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of interstitial cells of Cajal in the generation and modulation of motor activity induced by cholinergic neurotransmission in the stomach.
    Zhang RX; Wang XY; Chen D; Huizinga JD
    Neurogastroenterol Motil; 2011 Sep; 23(9):e356-71. PubMed ID: 21781228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model of pacemaker activity recorded from mouse small intestine.
    Youm JB; Kim N; Han J; Kim E; Joo H; Leem CH; Goto G; Noma A; Earm YE
    Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1135-54. PubMed ID: 16608700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrical analysis of slow wave propagation in the guinea-pig gastric antrum.
    Edwards FR; Hirst GD
    J Physiol; 2006 Feb; 571(Pt 1):179-89. PubMed ID: 16357016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haustral boundary contractions in the proximal 3-taeniated rabbit colon.
    Chen JH; Yang Z; Yu Y; Huizinga JD
    Am J Physiol Gastrointest Liver Physiol; 2016 Feb; 310(3):G181-92. PubMed ID: 26635318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engaging biological oscillators through second messenger pathways permits emergence of a robust gastric slow-wave during peristalsis.
    Ahmed MA; Venugopal S; Jung R
    PLoS Comput Biol; 2021 Dec; 17(12):e1009644. PubMed ID: 34871315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrergic signaling via interstitial cells of Cajal and smooth muscle cells influences circular smooth muscle contractility in murine colon.
    Beck K; Friebe A; Voussen B
    Neurogastroenterol Motil; 2018 Jun; 30(6):e13300. PubMed ID: 29377328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.