These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 28036163)
1. Immunosensors for C-Reactive Protein Based on Ultrathin Films of Carboxylated Cellulose Nanofibrils. Zhang Y; Rojas OJ Biomacromolecules; 2017 Feb; 18(2):526-534. PubMed ID: 28036163 [TBL] [Abstract][Full Text] [Related]
2. Bioactive cellulose nanofibrils for specific human IgG binding. Zhang Y; Carbonell RG; Rojas OJ Biomacromolecules; 2013 Dec; 14(12):4161-8. PubMed ID: 24131287 [TBL] [Abstract][Full Text] [Related]
3. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration. Sehaqui H; Kulasinski K; Pfenninger N; Zimmermann T; Tingaut P Biomacromolecules; 2017 Jan; 18(1):242-248. PubMed ID: 27958715 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a high-affinity QCM immunosensor using antibody fragmentation and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer. Kurosawa S; Nakamura M; Park JW; Aizawa H; Yamada K; Hirata M Biosens Bioelectron; 2004 Dec; 20(6):1134-9. PubMed ID: 15556359 [TBL] [Abstract][Full Text] [Related]
5. Modification of cellulose nanofibrils with luminescent carbon dots. Junka K; Guo J; Filpponen I; Laine J; Rojas OJ Biomacromolecules; 2014 Mar; 15(3):876-81. PubMed ID: 24456129 [TBL] [Abstract][Full Text] [Related]
6. Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Orelma H; Filpponen I; Johansson LS; Osterberg M; Rojas OJ; Laine J Biointerphases; 2012 Dec; 7(1-4):61. PubMed ID: 23055097 [TBL] [Abstract][Full Text] [Related]
7. Using carboxylated cellulose nanofibers to enhance mechanical and barrier properties of collagen fiber film by electrostatic interaction. Wang W; Zhang X; Li C; Du G; Zhang H; Ni Y J Sci Food Agric; 2018 Jun; 98(8):3089-3097. PubMed ID: 29210456 [TBL] [Abstract][Full Text] [Related]
8. Filaments with Affinity Binding and Wet Strength Can Be Achieved by Spinning Bifunctional Cellulose Nanofibrils. Vuoriluoto M; Orelma H; Lundahl M; Borghei M; Rojas OJ Biomacromolecules; 2017 Jun; 18(6):1803-1813. PubMed ID: 28436646 [TBL] [Abstract][Full Text] [Related]
9. The Impact of Surface Charges of Carboxylated Cellulose Nanofibrils on the Water Motions in Hydrated Films. Guccini V; Yu S; Meng Z; Kontturi E; Demmel F; Salazar-Alvarez G Biomacromolecules; 2022 Aug; 23(8):3104-3115. PubMed ID: 35786867 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942 [TBL] [Abstract][Full Text] [Related]
12. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid. Valle-Delgado JJ; Johansson LS; Österberg M Colloids Surf B Biointerfaces; 2016 Feb; 138():86-93. PubMed ID: 26674836 [TBL] [Abstract][Full Text] [Related]
13. Protein Adsorption Tailors the Surface Energies and Compatibility between Polylactide and Cellulose Nanofibrils. Khakalo A; Filpponen I; Rojas OJ Biomacromolecules; 2017 Apr; 18(4):1426-1433. PubMed ID: 28287713 [TBL] [Abstract][Full Text] [Related]
14. Reversible modification of structure and properties of cellulose nanofibril-based multilayered thin films induced by postassembly acid treatment. Azzam F; Moreau C; Cousin F; Menelle A; Bizot H; Cathala B Langmuir; 2015 Mar; 31(9):2800-7. PubMed ID: 25706711 [TBL] [Abstract][Full Text] [Related]
15. Functional and anionic cellulose-interacting polymers by selective chemo-enzymatic carboxylation of galactose-containing polysaccharides. Parikka K; Leppänen AS; Xu C; Pitkänen L; Eronen P; Osterberg M; Brumer H; Willför S; Tenkanen M Biomacromolecules; 2012 Aug; 13(8):2418-28. PubMed ID: 22724576 [TBL] [Abstract][Full Text] [Related]
16. Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatings. Willberg-Keyriläinen P; Vartiainen J; Pelto J; Ropponen J Carbohydr Polym; 2017 Aug; 170():160-165. PubMed ID: 28521982 [TBL] [Abstract][Full Text] [Related]
17. Glow-discharge treated piezoelectric quartz crystals as immunosensors for HSA detection. Saber R; Mutlu S; Pişkin E Biosens Bioelectron; 2002 Sep; 17(9):727-34. PubMed ID: 12191920 [TBL] [Abstract][Full Text] [Related]
18. Biocatalyzed deposition amplification for detection of aflatoxin B1 based on quartz crystal microbalance. Jin X; Jin X; Liu X; Chen L; Jiang J; Shen G; Yu R Anal Chim Acta; 2009 Jul; 645(1-2):92-7. PubMed ID: 19481636 [TBL] [Abstract][Full Text] [Related]
19. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(II) and a positively charged dye. Sehaqui H; Perez de Larraya U; Tingaut P; Zimmermann T Soft Matter; 2015 Jul; 11(26):5294-300. PubMed ID: 26052685 [TBL] [Abstract][Full Text] [Related]
20. Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces. Shimizu M; Saito T; Fukuzumi H; Isogai A Biomacromolecules; 2014 Nov; 15(11):4320-5. PubMed ID: 25310181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]