These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28036168)

  • 21. Highly sensitive and selective turn-on fluorescent and chromogenic probe for Cu2+ and ClO- based on a N-picolinyl rhodamine B-hydrazide derivative.
    Liu Y; Sun Y; Du J; Lv X; Zhao Y; Chen M; Wang P; Guo W
    Org Biomol Chem; 2011 Jan; 9(2):432-7. PubMed ID: 20981392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solid-phase synthesis of Rhodamine-110 fluorogenic substrates and their application in forensic analysis.
    Gooch J; Abbate V; Daniel B; Frascione N
    Analyst; 2016 Apr; 141(8):2392-5. PubMed ID: 27027574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Turn-on Fluorescent Biosensors for Imaging Hypoxia-like Conditions in Living Cells.
    Guisán-Ceinos S; R Rivero A; Romeo-Gella F; Simón-Fuente S; Gómez-Pastor S; Calvo N; Orrego AH; Guisán JM; Corral I; Sanz-Rodriguez F; Ribagorda M
    J Am Chem Soc; 2022 May; 144(18):8185-8193. PubMed ID: 35486830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate optimization for monitoring cathepsin C activity in live cells.
    Li J; Petrassi HM; Tumanut C; Masick BT; Trussell C; Harris JL
    Bioorg Med Chem; 2009 Feb; 17(3):1064-70. PubMed ID: 18313933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and characterization of a series of highly fluorogenic substrates for glutathione transferases, a general strategy.
    Zhang J; Shibata A; Ito M; Shuto S; Ito Y; Mannervik B; Abe H; Morgenstern R
    J Am Chem Soc; 2011 Sep; 133(35):14109-19. PubMed ID: 21786801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A highly sensitive probe detecting low pH area of HeLa cells based on rhodamine B modified beta-cyclodextrins.
    Hasegawa T; Kondo Y; Koizumi Y; Sugiyama T; Takeda A; Ito S; Hamada F
    Bioorg Med Chem; 2009 Aug; 17(16):6015-9. PubMed ID: 19616959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmentally Robust Rhodamine Reporters for Probe-based Cellular Detection of the Cancer-linked Oxidoreductase hNQO1.
    Best QA; Johnson AE; Prasai B; Rouillere A; McCarley RL
    ACS Chem Biol; 2016 Jan; 11(1):231-40. PubMed ID: 26555574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual-Stimuli Responsive 2D Supramolecular Organic Framework for the Detection of Azoreductase Activity.
    Zhang H; Liang F; Yang YW
    Chemistry; 2020 Jan; 26(1):198-205. PubMed ID: 31643112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification, Isolation and characterization of a novel azoreductase from Clostridium perfringens.
    Morrison JM; Wright CM; John GH
    Anaerobe; 2012 Apr; 18(2):229-34. PubMed ID: 22182443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mechanism of microsomal azoreduction: predictions based on electronic aspects of structure-activity relationships.
    Zbaida S
    Drug Metab Rev; 1995; 27(3):497-516. PubMed ID: 8521752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and partial characterization of two azoreductases from Shigella dysenteriae type 1.
    Ghosh DK; Mandal A; Chaudhuri J
    FEMS Microbiol Lett; 1992 Nov; 77(1-3):229-33. PubMed ID: 1459414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structures of AzrA and of AzrC complexed with substrate or inhibitor: insight into substrate specificity and catalytic mechanism.
    Yu J; Ogata D; Gai Z; Taguchi S; Tanaka I; Ooi T; Yao M
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):553-64. PubMed ID: 24531489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes.
    Myochin T; Hanaoka K; Iwaki S; Ueno T; Komatsu T; Terai T; Nagano T; Urano Y
    J Am Chem Soc; 2015 Apr; 137(14):4759-65. PubMed ID: 25764154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New fluorinated rhodamines for optical microscopy and nanoscopy.
    Mitronova GY; Belov VN; Bossi ML; Wurm CA; Meyer L; Medda R; Moneron G; Bretschneider S; Eggeling C; Jakobs S; Hell SW
    Chemistry; 2010 Apr; 16(15):4477-88. PubMed ID: 20309973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorogenic probe triggered by reduction for nucleic acids sensing.
    Furukawa K; Abe H; Wang J; Oki K; Uda M; Tsuneda S; Ito Y
    Nucleic Acids Symp Ser (Oxf); 2008; (52):353-4. PubMed ID: 18776399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-binding benzene and rhodamine B conjugate derivatives as fluorescent chemodosimeter for hypochlorite in living cell imaging.
    Zhang D; Ma Z; Wang Y; Yin H; Li M; Wang Y; Wang H; Jia B; Liu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117908. PubMed ID: 31841672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorogenic and chromogenic probe for rapid detection of a nerve agent simulant DCP.
    Wu WH; Dong JJ; Wang X; Li J; Sui SH; Chen GY; Liu JW; Zhang M
    Analyst; 2012 Jul; 137(14):3224-6. PubMed ID: 22624148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of major Escherichia coli reductases involved in aerobic nitro and azo reduction.
    Mercier C; Chalansonnet V; Orenga S; Gilbert C
    J Appl Microbiol; 2013 Oct; 115(4):1012-22. PubMed ID: 23795903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification of two azoreductases from Escherichia coli K12.
    Ghosh DK; Ghosh S; Sadhukhan P; Mandal A; Chaudhuri J
    Indian J Exp Biol; 1993 Dec; 31(12):951-4. PubMed ID: 8112774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and partial characterization of azoreductase from Enterobacter agglomerans.
    Moutaouakkil A; Zeroual Y; Zohra Dzayri F; Talbi M; Lee K; Blaghen M
    Arch Biochem Biophys; 2003 May; 413(1):139-46. PubMed ID: 12706351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.