These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
429 related articles for article (PubMed ID: 28036169)
1. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration. Xu C; Huang Y; Tang L; Hong Y ACS Appl Mater Interfaces; 2017 Jan; 9(3):2169-2180. PubMed ID: 28036169 [TBL] [Abstract][Full Text] [Related]
2. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Da L; Gong M; Chen A; Zhang Y; Huang Y; Guo Z; Li S; Li-Ling J; Zhang L; Xie H Acta Biomater; 2017 Sep; 59():45-57. PubMed ID: 28528117 [TBL] [Abstract][Full Text] [Related]
3. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering. Chen J; Dong R; Ge J; Guo B; Ma PX ACS Appl Mater Interfaces; 2015 Dec; 7(51):28273-85. PubMed ID: 26641320 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Ma Z; Hong Y; Nelson DM; Pichamuthu JE; Leeson CE; Wagner WR Biomacromolecules; 2011 Sep; 12(9):3265-74. PubMed ID: 21755999 [TBL] [Abstract][Full Text] [Related]
5. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Hong Y; Guan J; Fujimoto KL; Hashizume R; Pelinescu AL; Wagner WR Biomaterials; 2010 May; 31(15):4249-58. PubMed ID: 20188411 [TBL] [Abstract][Full Text] [Related]
6. Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds. Güney A; Malda J; Dhert WJA; Grijpma DW Int J Artif Organs; 2017 May; 40(4):176-184. PubMed ID: 28165584 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Zhang C; Wen X; Vyavahare NR; Boland T Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156 [TBL] [Abstract][Full Text] [Related]
8. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
9. A novel polyurethane-based biodegradable elastomer as a promising material for skeletal muscle tissue engineering. Ergene E; Yagci BS; Gokyer S; Eyidogan A; Aksoy EA; Yilgor Huri P Biomed Mater; 2019 Feb; 14(2):025014. PubMed ID: 30665203 [TBL] [Abstract][Full Text] [Related]
10. Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium. Xu C; Okpokwasili C; Huang Y; Shi X; Wu J; Liao J; Tang L; Hong Y ACS Biomater Sci Eng; 2020 May; 6(5):2757-2769. PubMed ID: 33313394 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites. Chan JP; Battiston KG; Santerre JP Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. Naureen B; Haseeb ASMA; Basirun WJ; Muhamad F Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111228. PubMed ID: 33254956 [TBL] [Abstract][Full Text] [Related]
14. Designing poly[(R)-3-hydroxybutyrate]-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability. Liu KL; Choo ES; Wong SY; Li X; He CB; Wang J; Li J J Phys Chem B; 2010 Jun; 114(22):7489-98. PubMed ID: 20469884 [TBL] [Abstract][Full Text] [Related]
15. A mechanical characterization of polymer scaffolds and films at the macroscale and nanoscale. Boffito M; Bernardi E; Sartori S; Ciardelli G; Sassi MP J Biomed Mater Res A; 2015 Jan; 103(1):162-9. PubMed ID: 24610888 [TBL] [Abstract][Full Text] [Related]
16. An elastomeric patch electrospun from a blended solution of dermal extracellular matrix and biodegradable polyurethane for rat abdominal wall repair. Hong Y; Takanari K; Amoroso NJ; Hashizume R; Brennan-Pierce EP; Freund JM; Badylak SF; Wagner WR Tissue Eng Part C Methods; 2012 Feb; 18(2):122-32. PubMed ID: 21933017 [TBL] [Abstract][Full Text] [Related]
17. [FABRICATION AND BIOCOMPATIBILITY EVALUATION OF POLYURETHANE- ACELLULAR MATRIX COMPOSITE SCAFFOLD IN VITRO AND IN VIVO]. Xiao Y; Zhang J; Lu Y; Yuan H; Bai L; Jiang X; Cheng J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1016-21. PubMed ID: 26677626 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a biodegradable electrospun polyurethane nanofiber scaffold: Mechanical properties and cytotoxicity. Yeganegi M; Kandel RA; Santerre JP Acta Biomater; 2010 Oct; 6(10):3847-55. PubMed ID: 20466079 [TBL] [Abstract][Full Text] [Related]
19. Azido-Functionalized Polyurethane Designed for Making Tunable Elastomers by Click Chemistry. Ding X; Gao J; Acharya AP; Wu YL; Little SR; Wang Y ACS Biomater Sci Eng; 2020 Feb; 6(2):852-864. PubMed ID: 33464838 [TBL] [Abstract][Full Text] [Related]
20. 3D Printed Biodegradable Polyurethaneurea Elastomer Recapitulates Skeletal Muscle Structure and Function. Gokyer S; Yilgor E; Yilgor I; Berber E; Vrana E; Orhan K; Monsef YA; Guvener O; Zinnuroglu M; Oto C; Yilgor Huri P ACS Biomater Sci Eng; 2021 Nov; 7(11):5189-5205. PubMed ID: 34661388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]