These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28036179)

  • 1. Relaxation-Assisted Separation of Overlapping Patterns in Ultra-Wideline NMR Spectra.
    Jaroszewicz MJ; Frydman L; Schurko RW
    J Phys Chem A; 2017 Jan; 121(1):51-65. PubMed ID: 28036179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D relaxation-assisted separation of wideline solid-state NMR patterns for achieving site resolution.
    Altenhof AR; Jaroszewicz MJ; Frydman L; Schurko RW
    Phys Chem Chem Phys; 2022 Sep; 24(37):22792-22805. PubMed ID: 36112060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-wideline solid-state NMR spectroscopy.
    Schurko RW
    Acc Chem Res; 2013 Sep; 46(9):1985-95. PubMed ID: 23745683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical considerations for the acquisition of ultra-wideline
    Veinberg SL; Lindquist AW; Jaroszewicz MJ; Schurko RW
    Solid State Nucl Magn Reson; 2017; 84():45-58. PubMed ID: 28130009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid acquisition of 14N solid-state NMR spectra with broadband cross polarization.
    Harris KJ; Veinberg SL; Mireault CR; Lupulescu A; Frydman L; Schurko RW
    Chemistry; 2013 Nov; 19(48):16469-75. PubMed ID: 24123255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-stepped ultra-wideline NMR at up to 36 T: On the inequivalence between field and frequency stepping.
    Hung I; Altenhof AR; Schurko RW; Bryce DL; Han OH; Gan Z
    Magn Reson Chem; 2021 Sep; 59(9-10):951-960. PubMed ID: 33373086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation-assisted separation of chemical sites in NMR spectroscopy of static solids.
    Lupulescu A; Kotecha M; Frydman L
    J Am Chem Soc; 2003 Mar; 125(11):3376-83. PubMed ID: 12630893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New methods for the acquisition of ultra-wideline solid-state NMR spectra of spin-1/2 nuclides.
    MacGregor AW; O'Dell LA; Schurko RW
    J Magn Reson; 2011 Jan; 208(1):103-13. PubMed ID: 21130011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband adiabatic inversion cross-polarization to integer-spin nuclei with application to deuterium NMR.
    Altenhof AR; Wi S; Schurko RW
    Magn Reson Chem; 2021 Sep; 59(9-10):1009-1023. PubMed ID: 33634894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband adiabatic inversion experiments for the measurement of longitudinal relaxation time constants.
    Altenhof AR; Jaroszewicz MJ; Harris KJ; Schurko RW
    J Chem Phys; 2021 Jan; 154(3):034202. PubMed ID: 33499635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the resolution of
    Hanrahan MP; Venkatesh A; Carnahan SL; Calahan JL; Lubach JW; Munson EJ; Rossini AJ
    Phys Chem Chem Phys; 2017 Oct; 19(41):28153-28162. PubMed ID: 29022618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences.
    Rossini AJ; Hanrahan MP; Thuo M
    Phys Chem Chem Phys; 2016 Sep; 18(36):25284-25295. PubMed ID: 27711677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimizing Lineshape Distortions in Static Ultra-wideline Nuclear Magnetic Resonance of Half-Integer Spin Quadrupolar Nuclei.
    Koppe J; Hansen MR
    J Phys Chem A; 2020 May; 124(21):4314-4321. PubMed ID: 32356988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the use of frequency-swept pulses and pulses designed with optimal control theory for the acquisition of ultra-wideline NMR spectra.
    Altenhof AR; Lindquist AW; Foster LDD; Holmes ST; Schurko RW
    J Magn Reson; 2019 Dec; 309():106612. PubMed ID: 31622849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirectly detected satellite-transition quadrupolar NMR via progressive saturation of the proton reservoir.
    Wolf T; Eden-Kossoy A; Frydman L
    Solid State Nucl Magn Reson; 2023 Jun; 125():101862. PubMed ID: 36989551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retaining both discrete and smooth features in 1D and 2D NMR relaxation and diffusion experiments.
    Reci A; Sederman AJ; Gladden LF
    J Magn Reson; 2017 Nov; 284():39-47. PubMed ID: 28957684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-wideline 27Al NMR investigation of three- and five-coordinate aluminum environments.
    Tang JA; Masuda JD; Boyle TJ; Schurko RW
    Chemphyschem; 2006 Jan; 7(1):117-30. PubMed ID: 16404763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "EASY: A simple tool for simultaneously removing background, deadtime and acoustic ringing in quantitative NMR spectroscopy. Part II: Improved ringing suppression, application to quadrupolar nuclei, cross polarisation and 2D NMR".
    Jaeger C; Hemmann F
    Solid State Nucl Magn Reson; 2014; 63-64():13-9. PubMed ID: 25200102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of ¹⁷O-¹⁸⁵/¹⁸⁷Re ¹J-coupling in perrhenates by solid-state ¹⁷O VT MAS NMR: temperature and self-decoupling effects.
    Jakobsen HJ; Bildsøe H; Brorson M; Gan Z; Hung I
    J Magn Reson; 2013 May; 230():98-110. PubMed ID: 23454579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Obtaining sparse distributions in 2D inverse problems.
    Reci A; Sederman AJ; Gladden LF
    J Magn Reson; 2017 Aug; 281():188-198. PubMed ID: 28623744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.