These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 28036183)
1. Lattice Boltzmann Simulation of Droplets Impacting on Superhydrophobic Surfaces with Randomly Distributed Rough Structures. Yuan WZ; Zhang LZ Langmuir; 2017 Jan; 33(3):820-829. PubMed ID: 28036183 [TBL] [Abstract][Full Text] [Related]
2. Pinning-Depinning Mechanisms of the Contact Line during Evaporation of Microdroplets on Rough Surfaces: A Lattice Boltzmann Simulation. Yuan WZ; Zhang LZ Langmuir; 2018 Jul; 34(26):7906-7915. PubMed ID: 29889540 [TBL] [Abstract][Full Text] [Related]
3. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio. Kim JH; Rothstein JP Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306 [TBL] [Abstract][Full Text] [Related]
4. Droplets Can Rebound toward Both Directions on Textured Surfaces with a Wettability Gradient. Zhang B; Lei Q; Wang Z; Zhang X Langmuir; 2016 Jan; 32(1):346-51. PubMed ID: 26669260 [TBL] [Abstract][Full Text] [Related]
5. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153 [TBL] [Abstract][Full Text] [Related]
6. Impact Behaviors on Superhydrophobic Surfaces for Water Droplets of Asymmetric Double-Chain Quaternary Ammonium Surfactants. Li H; Cai Z; Wang Y Langmuir; 2020 Nov; 36(46):14113-14122. PubMed ID: 33166156 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures. Zhang P; Maeda Y; Lv F; Takata Y; Orejon D ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681 [TBL] [Abstract][Full Text] [Related]
8. Coalescence, Spreading, and Rebound of Two Water Droplets with Different Temperatures on a Superhydrophobic Surface. Xu H; Chang C; Yi N; Tao P; Song C; Wu J; Deng T; Shang W ACS Omega; 2019 Oct; 4(18):17615-17622. PubMed ID: 31681868 [TBL] [Abstract][Full Text] [Related]
9. Numerical simulation of condensation on structured surfaces. Fu X; Yao Z; Hao P Langmuir; 2014 Nov; 30(46):14048-55. PubMed ID: 25347594 [TBL] [Abstract][Full Text] [Related]
10. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability. Fang G; Li W; Wang X; Qiao G Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770 [TBL] [Abstract][Full Text] [Related]
11. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment. Synytska A; Ionov L; Grundke K; Stamm M Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778 [TBL] [Abstract][Full Text] [Related]
12. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
13. Spreading, Breakup, and Rebound Behaviors of Compound Droplets Impacting on Microstructured Substrates. Farokhirad S; Solanky P; Shad MM Langmuir; 2023 Mar; 39(10):3645-3655. PubMed ID: 36853952 [TBL] [Abstract][Full Text] [Related]
14. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866 [TBL] [Abstract][Full Text] [Related]
16. Elucidating Nonwetting of Re-Entrant Surfaces with Impinging Droplets. Zhang B; Zhang X Langmuir; 2015 Sep; 31(34):9448-57. PubMed ID: 26270084 [TBL] [Abstract][Full Text] [Related]
17. Freezing Characteristics of a Water Droplet on a Multiscale Superhydrophobic Surface. Hatte S; Kant K; Pitchumani R Langmuir; 2023 Aug; 39(33):11898-11909. PubMed ID: 37552572 [TBL] [Abstract][Full Text] [Related]
18. Predictive model for ice formation on superhydrophobic surfaces. Bahadur V; Mishchenko L; Hatton B; Taylor JA; Aizenberg J; Krupenkin T Langmuir; 2011 Dec; 27(23):14143-50. PubMed ID: 21899285 [TBL] [Abstract][Full Text] [Related]
19. Water droplet impact on elastic superhydrophobic surfaces. Weisensee PB; Tian J; Miljkovic N; King WP Sci Rep; 2016 Jul; 6():30328. PubMed ID: 27461899 [TBL] [Abstract][Full Text] [Related]
20. The influence of molecular-scale roughness on the surface spreading of an aqueous nanodrop. Daub CD; Wang J; Kudesia S; Bratko D; Luzar A Faraday Discuss; 2010; 146():67-77; discussion 79-101, 395-401. PubMed ID: 21043415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]