These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 28036338)

  • 1. Component HCF Research Based on the Theory of Critical Distance and a Relative Stress Gradient Modification.
    Sun S; Yu X; Liu Z; Chen X
    PLoS One; 2016; 11(12):e0167722. PubMed ID: 28036338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new stress field intensity model and its application in component high cycle fatigue research.
    Sun S
    PLoS One; 2020; 15(7):e0235323. PubMed ID: 32692776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can the theory of critical distances predict the failure of shape memory alloys?
    Kasiri S; Kelly DJ; Taylor D
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):491-6. PubMed ID: 21331959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Investigation of the Contact Fatigue Characteristics of an RV Reducer Crankshaft, Considering the Hardness Gradients and Initial Residual Stress.
    Li X; Shao W; Tang J; Ding H; Zhou W
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critical distance study of stress concentrations in bone.
    Kasiri S; Taylor D
    J Biomech; 2008; 41(3):603-9. PubMed ID: 18023446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.
    Zhu SP; Yue P; Yu ZY; Wang Q
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fatigue assessment technique for modular and pre-stressed orthopaedic implants.
    Dickinson AS; Browne M; Roques AC; Taylor AC
    Med Eng Phys; 2014 Jan; 36(1):72-80. PubMed ID: 24148237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of microwave digestion/AAS in detecting crankshaft bearing knock.
    Chen LD; Zhao YR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1683-7. PubMed ID: 25358188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modified nonlinear damage accumulation model for fatigue life prediction considering load interaction effects.
    Gao H; Huang HZ; Zhu SP; Li YF; Yuan R
    ScientificWorldJournal; 2014; 2014():164378. PubMed ID: 24574866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical verification of two-component dental implant in the context of fatigue life for various load cases.
    Szajek K; Wierszycki M
    Acta Bioeng Biomech; 2016; 18(1):103-13. PubMed ID: 27150312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue Prediction of Aluminum Alloys Considering Critical Plane Orientation under Complex Stress States.
    Kurek M
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32887343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue behavior of thin-walled grade 2 titanium samples processed by selective laser melting. Application to life prediction of porous titanium implants.
    Lipinski P; Barbas A; Bonnet AS
    J Mech Behav Biomed Mater; 2013 Dec; 28():274-90. PubMed ID: 24008139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical distribution of the fatigue strength of porous bone cement.
    Hoey DA; Taylor D
    Biomaterials; 2009 Oct; 30(31):6309-17. PubMed ID: 19699519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical and biological aspects of defect treatment in fractures using helical plates.
    Perren SM; Regazzoni P; Fernandez AA
    Acta Chir Orthop Traumatol Cech; 2014; 81(4):267-71. PubMed ID: 25137496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment and Verification of Multiaxis Fatigue Life Prediction Model.
    Fu Z; Li X; Zhang S; Xiong H; Liu C; Li K
    Scanning; 2021; 2021():8875958. PubMed ID: 33623538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.
    Robertson SW; Ritchie RO
    Biomaterials; 2007 Feb; 28(4):700-9. PubMed ID: 17034845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Load limit of mini-implants with reduced abutment height based on fatigue fracture resistance: experimental and finite element study.
    Toyoshima Y; Wakabayashi N
    Int J Oral Maxillofac Implants; 2015; 30(1):e10-6. PubMed ID: 25506647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material.
    Sweeney CA; O'Brien B; Dunne FP; McHugh PE; Leen SB
    J Mech Behav Biomed Mater; 2015 Jun; 46():244-60. PubMed ID: 25817609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.