BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 28038427)

  • 1. Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell.
    Zhang Z; Zhao S; Yao Z; Wang L; Shao J; Chen A; Zhang F; Zheng S
    Redox Biol; 2017 Apr; 11():322-334. PubMed ID: 28038427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The blockade of lipophagy pathway is necessary for docosahexaenoic acid to regulate lipid droplet turnover in hepatic stellate cells.
    Qiu S; Xu H; Lin Z; Liu F; Tan F
    Biomed Pharmacother; 2019 Jan; 109():1841-1850. PubMed ID: 30551439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ROS-JNK1/2-dependent activation of autophagy is required for the induction of anti-inflammatory effect of dihydroartemisinin in liver fibrosis.
    Zhang Z; Guo M; Zhao S; Shao J; Zheng S
    Free Radic Biol Med; 2016 Dec; 101():272-283. PubMed ID: 27989749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oroxylin A regulates the turnover of lipid droplet via downregulating adipose triglyceride lipase (ATGL) in hepatic stellate cells.
    Zhang Z; Guo M; Shen M; Li Y; Tan S; Shao J; Zhang F; Chen A; Wang S; Zheng S
    Life Sci; 2019 Dec; 238():116934. PubMed ID: 31610205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells.
    Zhang Z; Yao Z; Wang L; Ding H; Shao J; Chen A; Zhang F; Zheng S
    Autophagy; 2018; 14(12):2083-2103. PubMed ID: 30081711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid droplets, the Holy Grail of hepatic stellate cells: In health and hepatic fibrosis.
    Mak KM; Wu C; Cheng CP
    Anat Rec (Hoboken); 2023 May; 306(5):983-1010. PubMed ID: 36516055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perilipin 5 restores the formation of lipid droplets in activated hepatic stellate cells and inhibits their activation.
    Lin J; Chen A
    Lab Invest; 2016 Jul; 96(7):791-806. PubMed ID: 27135793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIF-1α-upregulated lncRNA-H19 regulates lipid droplet metabolism through the AMPKα pathway in hepatic stellate cells.
    Wang Z; Yang X; Kai J; Wang F; Wang Z; Shao J; Tan S; Chen A; Zhang F; Wang S; Zhang Z; Zheng S
    Life Sci; 2020 Aug; 255():117818. PubMed ID: 32445757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curcumol induces RIPK1/RIPK3 complex-dependent necroptosis via JNK1/2-ROS signaling in hepatic stellate cells.
    Jia Y; Wang F; Guo Q; Li M; Wang L; Zhang Z; Jiang S; Jin H; Chen A; Tan S; Zhang F; Shao J; Zheng S
    Redox Biol; 2018 Oct; 19():375-387. PubMed ID: 30237126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between autophagy and senescence is required for dihydroartemisinin to alleviate liver fibrosis.
    Zhang Z; Yao Z; Zhao S; Shao J; Chen A; Zhang F; Zheng S
    Cell Death Dis; 2017 Jun; 8(6):e2886. PubMed ID: 28617435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dihydroartemisinin regulates lipid droplet metabolism in hepatic stellate cells by inhibiting lncRNA-H19-induced AMPK signal.
    Xia S; Wang Z; Chen L; Zhou Y; Li Y; Wang S; Chen A; Xu X; Shao J; Zhang Z; Tan S; Zhang F; Zheng S
    Biochem Pharmacol; 2021 Oct; 192():114730. PubMed ID: 34400125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curcumin Recovers Intracellular Lipid Droplet Formation Through Increasing Perilipin 5 Gene Expression in Activated Hepatic Stellate Cells In Vitro.
    Han XQ; Xu SQ; Lin JG
    Curr Med Sci; 2019 Oct; 39(5):766-777. PubMed ID: 31612395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liver X receptors balance lipid stores in hepatic stellate cells through Rab18, a retinoid responsive lipid droplet protein.
    O'Mahony F; Wroblewski K; O'Byrne SM; Jiang H; Clerkin K; Benhammou J; Blaner WS; Beaven SW
    Hepatology; 2015 Aug; 62(2):615-26. PubMed ID: 25482505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells.
    Zhang Z; Guo M; Li Y; Shen M; Kong D; Shao J; Ding H; Tan S; Chen A; Zhang F; Zheng S
    Autophagy; 2020 Aug; 16(8):1482-1505. PubMed ID: 31679460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methyl Helicterate Inhibits Hepatic Stellate Cell Activation Through Modulation of Apoptosis and Autophagy.
    Zhang XL; Chen ZN; Huang QF; Bai FC; Nie JL; Lu SJ; Wei JB; Lin X
    Cell Physiol Biochem; 2018; 51(2):897-908. PubMed ID: 30466104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taurine attenuates activation of hepatic stellate cells by inhibiting autophagy and inducing ferroptosis.
    Li S; Ren QJ; Xie CH; Cui Y; Xu LT; Wang YD; Li S; Liang XQ; Wen B; Liang MK; Zhao XF
    World J Gastroenterol; 2024 Apr; 30(15):2143-2154. PubMed ID: 38681990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-30a ameliorates hepatic fibrosis by inhibiting Beclin1-mediated autophagy.
    Chen J; Yu Y; Li S; Liu Y; Zhou S; Cao S; Yin J; Li G
    J Cell Mol Med; 2017 Dec; 21(12):3679-3692. PubMed ID: 28766848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipopolysaccharide mediates hepatic stellate cell activation by regulating autophagy and retinoic acid signaling.
    Chen M; Liu J; Yang W; Ling W
    Autophagy; 2017; 13(11):1813-1827. PubMed ID: 29160747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rev-erb agonist and TGF-β similarly affect autophagy but differentially regulate hepatic stellate cell fibrogenic phenotype.
    Thomes PG; Brandon-Warner E; Li T; Donohue TM; Schrum LW
    Int J Biochem Cell Biol; 2016 Dec; 81(Pt A):137-147. PubMed ID: 27840152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysosome-mediated degradation of a distinct pool of lipid droplets during hepatic stellate cell activation.
    Tuohetahuntila M; Molenaar MR; Spee B; Brouwers JF; Wubbolts R; Houweling M; Yan C; Du H; VanderVen BC; Vaandrager AB; Helms JB
    J Biol Chem; 2017 Jul; 292(30):12436-12448. PubMed ID: 28615446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.