BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 28038681)

  • 1. Nanostructured scaffold as a determinant of stem cell fate.
    Krishna L; Dhamodaran K; Jayadev C; Chatterjee K; Shetty R; Khora SS; Das D
    Stem Cell Res Ther; 2016 Dec; 7(1):188. PubMed ID: 28038681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration.
    Mitsiadis TA; Woloszyk A; Jiménez-Rojo L
    Nanomedicine (Lond); 2012 Nov; 7(11):1743-53. PubMed ID: 23210714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.
    Menaa F; Abdelghani A; Menaa B
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotechnology to drive stem cell commitment.
    Bressan E; Carraro A; Ferroni L; Gardin C; Sbricoli L; Guazzo R; Stellini E; Roman M; Pinton P; Sivolella S; Zavan B
    Nanomedicine (Lond); 2013 Mar; 8(3):469-86. PubMed ID: 23477337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomaterials for Engineering Stem Cell Responses.
    Kerativitayanan P; Carrow JK; Gaharwar AK
    Adv Healthc Mater; 2015 Aug; 4(11):1600-27. PubMed ID: 26010739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of nanoparticles in stem cell differentiation and further therapeutic applications.
    Dayem AA; Choi HY; Yang GM; Kim K; Saha SK; Kim JH; Cho SG
    Biotechnol J; 2016 Dec; 11(12):1550-1560. PubMed ID: 27797150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment.
    Das RK; Zouani OF
    Biomaterials; 2014 Jul; 35(20):5278-5293. PubMed ID: 24720880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of nanomaterials on stem cell differentiation: designing an appropriate nanobiointerface.
    Ilie I; Ilie R; Mocan T; Bartos D; Mocan L
    Int J Nanomedicine; 2012; 7():2211-25. PubMed ID: 22619557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging.
    Solanki A; Kim JD; Lee KB
    Nanomedicine (Lond); 2008 Aug; 3(4):567-78. PubMed ID: 18694318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnology in the regulation of stem cell behavior.
    Wu KC; Tseng CL; Wu CC; Kao FC; Tu YK; C So E; Wang YK
    Sci Technol Adv Mater; 2013 Oct; 14(5):054401. PubMed ID: 27877605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine.
    Cosson S; Otte EA; Hezaveh H; Cooper-White JJ
    Stem Cells Transl Med; 2015 Feb; 4(2):156-64. PubMed ID: 25575526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine.
    Tay CY; Koh CG; Tan NS; Leong DT; Tan LP
    Nanomedicine (Lond); 2013 Apr; 8(4):623-38. PubMed ID: 23560412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stem cells and nanomaterials.
    Hofmann MC
    Adv Exp Med Biol; 2014; 811():255-75. PubMed ID: 24683036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans.
    Arora P; Sindhu A; Dilbaghi N; Chaudhury A; Rajakumar G; Rahuman AA
    J Cell Mol Med; 2012 Sep; 16(9):1991-2000. PubMed ID: 22260258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanopatterned Scaffolds for Neural Tissue Engineering and Regenerative Medicine.
    Park S; Kim D; Park S; Kim S; Lee D; Kim W; Kim J
    Adv Exp Med Biol; 2018; 1078():421-443. PubMed ID: 30357636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysaccharide nanofibers with variable compliance for directing cell fate.
    Jiang X; Nai MH; Lim CT; Le Visage C; Chan JK; Chew SY
    J Biomed Mater Res A; 2015 Mar; 103(3):959-68. PubMed ID: 24853353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in stem cell differentiation directed by material and mechanical cues.
    Lin X; Shi Y; Cao Y; Liu W
    Biomed Mater; 2016 Feb; 11(1):014109. PubMed ID: 26836059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds.
    Nathan AS; Baker BM; Nerurkar NL; Mauck RL
    Acta Biomater; 2011 Jan; 7(1):57-66. PubMed ID: 20709198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.