These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28038903)

  • 21. Recovery of valuable components from waste LCD panel through a dry physical method.
    Wang S; He Y; Zhang T; Zhang G
    Waste Manag; 2017 Jun; 64():255-262. PubMed ID: 28365276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The application of pneumatic jigging in the recovery of metallic fraction from shredded printed wiring boards.
    Wang Z; Hall P; Miles NJ; Wu T; Lambert P; Gu F
    Waste Manag Res; 2015 Sep; 33(9):785-93. PubMed ID: 26070501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction.
    He Y; Ma E; Xu Z
    J Hazard Mater; 2014 Mar; 268():185-90. PubMed ID: 24491442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New characterisation method of electrical and electronic equipment wastes (WEEE).
    Menad N; Guignot S; van Houwelingen JA
    Waste Manag; 2013 Mar; 33(3):706-13. PubMed ID: 22784477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaching and purification of indium from waste liquid crystal display panel after hydrothermal pretreatment: Optimum conditions determination and kinetic analysis.
    Cao Y; Li F; Li G; Huang J; Zhu H; He W
    Waste Manag; 2020 Feb; 102():635-644. PubMed ID: 31785523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of pyrolysis process to remove and recover liquid crystal and films from waste liquid crystal display glass.
    Lu R; Ma E; Xu Z
    J Hazard Mater; 2012 Dec; 243():311-8. PubMed ID: 23127276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the acidophilic microbial community's adaptation for enhancement indium bioleaching from high pulp density shredded discarded LCD panels.
    Constantin A; Pourhossein F; Ray D; Farnaud S
    J Environ Manage; 2024 Aug; 365():121521. PubMed ID: 38959774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An evaluation of the potential yield of indium recycled from end-of-life LCDs: A case study in China.
    Wang H; Gu Y; Wu Y; Zhang YN; Wang W
    Waste Manag; 2015 Dec; 46():480-7. PubMed ID: 26277718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indium and tin recovery from waste LCD panels using citrate as a complexing agent.
    López-Yáñez A; Alonso A; Vengoechea-Pimienta A; Ramírez-Muñoz J
    Waste Manag; 2019 Aug; 96():181-189. PubMed ID: 31376963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres.
    Arends D; Schlummer M; Mäurer A; Markowski J; Wagenknecht U
    Waste Manag Res; 2015 Sep; 33(9):775-84. PubMed ID: 26111535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. End of life liquid crystal displays recycling: A patent review.
    Amato A; Beolchini F
    J Environ Manage; 2018 Nov; 225():1-9. PubMed ID: 30071361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels.
    Savvilotidou V; Antoniou A; Gidarakos E
    Waste Manag; 2017 Jan; 59():394-402. PubMed ID: 27742228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation and comparison of pre-treatment techniques for recovering indium from discarded liquid crystal displays.
    Savvilotidou V; Kousaiti A; Batinic B; Vaccari M; Kastanaki E; Karagianni K; Gidarakos E
    Waste Manag; 2019 Mar; 87():51-61. PubMed ID: 31109551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste) - A review.
    Zheng K; Benedetti MF; van Hullebusch ED
    J Environ Manage; 2023 Dec; 347():119043. PubMed ID: 37776794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Indium recovery from spent liquid crystal displays by using hydrometallurgical methods and microwave pyrolysis.
    Huang YF; Wang SY; Lo SL
    Chemosphere; 2021 Oct; 280():130905. PubMed ID: 34162103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leaching of indium and tin from waste LCD by a time-efficient method assisted planetary high energy ball milling.
    Qin J; Ning S; Fujita T; Wei Y; Zhang S; Lu S
    Waste Manag; 2021 Feb; 120():193-201. PubMed ID: 33310131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-situ reaction for recycling indium from waste liquid crystal display panels by vaccum reduction with pyrolytic carbon as reductant.
    Wang R; Hou Y; Xu Z
    Waste Manag; 2019 Feb; 85():538-547. PubMed ID: 30803609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.
    Wang R; Chen Y; Xu Z
    Environ Sci Technol; 2015 May; 49(10):5999-6008. PubMed ID: 25915068
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Commercial indium recovery processes development from various e-(industry) waste through the insightful integration of valorization processes: A perspective.
    Swain B; Lee CG
    Waste Manag; 2019 Mar; 87():597-611. PubMed ID: 31109560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.