These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28039138)

  • 1. An Effective Counterselection System for Listeria monocytogenes and Its Use To Characterize the Monocin Genomic Region of Strain 10403S.
    Argov T; Rabinovich L; Sigal N; Herskovits AA
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28039138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Counterselection for Methylococcus capsulatus (Bath) by Using a Mutated
    Ishikawa M; Yokoe S; Kato S; Hori K
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266726
    [No Abstract]   [Full Text] [Related]  

  • 3. Generation of Markerless Gene Deletion Mutants in Listeria monocytogenes Using a Mutated pheS for Counterselection.
    Ran Sapir S; Boichis E; Herskovits AA
    Methods Mol Biol; 2022; 2427():3-10. PubMed ID: 35619020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Counterselection employing mutated pheS for markerless genetic deletion in Bacteroides species.
    Kino Y; Nakayama-Imaohji H; Fujita M; Tada A; Yoneda S; Murakami K; Hashimoto M; Hayashi T; Okazaki K; Kuwahara T
    Anaerobe; 2016 Dec; 42():81-88. PubMed ID: 27639596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel suicide plasmid for efficient gene mutation in Listeria monocytogenes.
    Abdelhamed H; Lawrence ML; Karsi A
    Plasmid; 2015 Sep; 81():1-8. PubMed ID: 26038185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular engineering of a PheS counterselection marker for improved operating efficiency in Escherichia coli.
    Miyazaki K
    Biotechniques; 2015 Feb; 58(2):86-8. PubMed ID: 25652032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a counterselectable seamless mutagenesis system in lactic acid bacteria.
    Xin Y; Guo T; Mu Y; Kong J
    Microb Cell Fact; 2017 Jul; 16(1):116. PubMed ID: 28679374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a dual-antimicrobial counterselection method for markerless genetic engineering of bacterial genomes.
    Ji X; Lu P; van der Veen S
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1465-1474. PubMed ID: 30607491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the counter selectable marker PheS* for genome engineering in Staphylococcus aureus.
    Schuster CF; Howard SA; Gründling A
    Microbiology (Reading); 2019 May; 165(5):572-584. PubMed ID: 30942689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A counterselection method for Lactococcus lactis genome editing based on class IIa bacteriocin sensitivity.
    Wan X; Usvalampi AM; Saris PE; Takala TM
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9661-9669. PubMed ID: 27654656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a counterselectable system for rapid and efficient CRISPR-based genome engineering in Zymomonas mobilis.
    Zheng Y; Fu H; Chen J; Li J; Bian Y; Hu P; Lei L; Liu Y; Yang J; Peng W
    Microb Cell Fact; 2023 Oct; 22(1):208. PubMed ID: 37833755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pheS
    Zhou C; Shi L; Ye B; Feng H; Zhang J; Zhang R; Yan X
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):217-227. PubMed ID: 27730334
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Liu Y; He X; Zhu P; Cheng M; Hong Q; Yan X
    Front Microbiol; 2020; 11():441. PubMed ID: 32296398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the genome of Thermus thermophilus using a counterselectable marker.
    Carr JF; Danziger ME; Huang AL; Dahlberg AE; Gregory ST
    J Bacteriol; 2015 Mar; 197(6):1135-44. PubMed ID: 25605305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characterization of a recombinant Listeria monocytogenes strain containing the fusion protein gene of Newcastle disease virus].
    Xu JJ; Jiang LL; Chen N; Shuai JB; Fang WH
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):445-50. PubMed ID: 16933618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. F-Type Bacteriocins of Listeria monocytogenes: a New Class of Phage Tail-Like Structures Reveals Broad Parallel Coevolution between Tailed Bacteriophages and High-Molecular-Weight Bacteriocins.
    Lee G; Chakraborty U; Gebhart D; Govoni GR; Zhou ZH; Scholl D
    J Bacteriol; 2016 Oct; 198(20):2784-93. PubMed ID: 27457717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a mutant Listeria monocytogenes strain expressing green fluorescent protein.
    Jiang LL; Song HH; Chen XY; Ke CL; Xu JJ; Chen N; Fang WH
    Acta Biochim Biophys Sin (Shanghai); 2005 Jan; 37(1):19-24. PubMed ID: 15645077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient markerless genetic manipulation of
    Jiang J; Zhao Y; Chen A; Sun J; Zhou M; Hu J; Cao X; Dai N; Liang Z; Feng S
    Appl Environ Microbiol; 2024 Apr; 90(4):e0204323. PubMed ID: 38547470
    [No Abstract]   [Full Text] [Related]  

  • 19. Recombineering in
    Zhang S; Zou Z; Kreth J; Merritt J
    Front Cell Infect Microbiol; 2017; 7():202. PubMed ID: 28589101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pKSS--a second-generation general purpose cloning vector for efficient positive selection of recombinant clones.
    Kast P
    Gene; 1994 Jan; 138(1-2):109-14. PubMed ID: 8125286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.