These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 28039271)
1. Novel lnu(G) gene conferring resistance to lincomycin by nucleotidylation, located on Tn6260 from Enterococcus faecalis E531. Zhu XQ; Wang XM; Li H; Shang YH; Pan YS; Wu CM; Wang Y; Du XD; Shen JZ J Antimicrob Chemother; 2017 Apr; 72(4):993-997. PubMed ID: 28039271 [TBL] [Abstract][Full Text] [Related]
2. A novel resistance gene, lnu(H), conferring resistance to lincosamides in Riemerella anatipestifer CH-2. Luo HY; Liu MF; Wang MS; Zhao XX; Jia RY; Chen S; Sun KF; Yang Q; Wu Y; Chen XY; Biville F; Zou YF; Jing B; Cheng AC; Zhu DK Int J Antimicrob Agents; 2018 Jan; 51(1):136-139. PubMed ID: 28843817 [TBL] [Abstract][Full Text] [Related]
4. New lnu(C) gene conferring resistance to lincomycin by nucleotidylation in Streptococcus agalactiae UCN36. Achard A; Villers C; Pichereau V; Leclercq R Antimicrob Agents Chemother; 2005 Jul; 49(7):2716-9. PubMed ID: 15980341 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of nine novel types of small staphylococcal plasmids carrying the lincosamide nucleotidyltransferase gene lnu(A). Lüthje P; von Köckritz-Blickwede M; Schwarz S J Antimicrob Chemother; 2007 Apr; 59(4):600-6. PubMed ID: 17329268 [TBL] [Abstract][Full Text] [Related]
6. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. Wang Y; Lv Y; Cai J; Schwarz S; Cui L; Hu Z; Zhang R; Li J; Zhao Q; He T; Wang D; Wang Z; Shen Y; Li Y; Feßler AT; Wu C; Yu H; Deng X; Xia X; Shen J J Antimicrob Chemother; 2015 Aug; 70(8):2182-90. PubMed ID: 25977397 [TBL] [Abstract][Full Text] [Related]
7. Lincosamide resistance mediated by lnu(C) (L phenotype) in a Streptococcus anginosus clinical isolate. Gravey F; Galopin S; Grall N; Auzou M; Andremont A; Leclercq R; Cattoir V J Antimicrob Chemother; 2013 Nov; 68(11):2464-7. PubMed ID: 23812683 [TBL] [Abstract][Full Text] [Related]
8. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. He T; Shen Y; Schwarz S; Cai J; Lv Y; Li J; Feßler AT; Zhang R; Wu C; Shen J; Wang Y J Antimicrob Chemother; 2016 Jun; 71(6):1466-73. PubMed ID: 26903276 [TBL] [Abstract][Full Text] [Related]
9. Transposon-associated lincosamide resistance lnu(C) gene identified in Brachyspira hyodysenteriae ST83. De Luca S; Nicholson P; Magistrali CF; García-Martín AB; Rychener L; Zeeh F; Frey J; Perreten V Vet Microbiol; 2018 Feb; 214():51-55. PubMed ID: 29408032 [TBL] [Abstract][Full Text] [Related]
10. In vivo spread of macrolide-lincosamide-streptogramin B (MLSB) resistance--a model study in chickens. Marosevic D; Cervinkova D; Vlkova H; Videnska P; Babak V; Jaglic Z Vet Microbiol; 2014 Jul; 171(3-4):388-96. PubMed ID: 24467930 [TBL] [Abstract][Full Text] [Related]
11. Role of a qnr-like gene in the intrinsic resistance of Enterococcus faecalis to fluoroquinolones. Arsène S; Leclercq R Antimicrob Agents Chemother; 2007 Sep; 51(9):3254-8. PubMed ID: 17620379 [TBL] [Abstract][Full Text] [Related]
12. Spread of multidrug-resistant Enterococcus to animals and humans: an underestimated role for the pig farm environment. Novais C; Freitas AR; Silveira E; Antunes P; Silva R; Coque TM; Peixe L J Antimicrob Chemother; 2013 Dec; 68(12):2746-54. PubMed ID: 23861310 [TBL] [Abstract][Full Text] [Related]
13. Detection of a streptomycin/spectinomycin adenylyltransferase gene (aadA) in Enterococcus faecalis. Clark NC; Olsvik O; Swenson JM; Spiegel CA; Tenover FC Antimicrob Agents Chemother; 1999 Jan; 43(1):157-60. PubMed ID: 9869582 [TBL] [Abstract][Full Text] [Related]
14. Genetic environment and location of the lnu(A) and lnu(B) genes in methicillin-resistant Staphylococcus aureus and other staphylococci of animal and human origin. Lozano C; Aspiroz C; Sáenz Y; Ruiz-García M; Royo-García G; Gómez-Sanz E; Ruiz-Larrea F; Zarazaga M; Torres C J Antimicrob Chemother; 2012 Dec; 67(12):2804-8. PubMed ID: 22899804 [TBL] [Abstract][Full Text] [Related]
15. Identification of the novel lincosamide resistance gene lnu(E) truncated by ISEnfa5-cfr-ISEnfa5 insertion in Streptococcus suis: de novo synthesis and confirmation of functional activity in Staphylococcus aureus. Zhao Q; Wendlandt S; Li H; Li J; Wu C; Shen J; Schwarz S; Wang Y Antimicrob Agents Chemother; 2014; 58(3):1785-8. PubMed ID: 24366733 [TBL] [Abstract][Full Text] [Related]
17. Emergence of lnu(C) variant conferring lincomycin resistance in Campylobacter coli of chicken origin. Li W; Jiao D; Kang J; Yu R; Zhao W; Xu C; Li R; Du XD; Yao H Int J Food Microbiol; 2023 Mar; 388():110098. PubMed ID: 36716575 [TBL] [Abstract][Full Text] [Related]
18. New genetic context of Zhou K; Zhu D; Tao Y; Xie L; Han L; Zhang Y; Sun J Antimicrob Resist Infect Control; 2019; 8():117. PubMed ID: 31346458 [TBL] [Abstract][Full Text] [Related]
19. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Bozdogan B; Berrezouga L; Kuo MS; Yurek DA; Farley KA; Stockman BJ; Leclercq R Antimicrob Agents Chemother; 1999 Apr; 43(4):925-9. PubMed ID: 10103201 [TBL] [Abstract][Full Text] [Related]