BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28039323)

  • 1. Succession of splicing regulatory elements determines cryptic 5΄ss functionality.
    Brillen AL; Schöneweis K; Walotka L; Hartmann L; Müller L; Ptok J; Kaisers W; Poschmann G; Stühler K; Buratti E; Theiss S; Schaal H
    Nucleic Acids Res; 2017 Apr; 45(7):4202-4216. PubMed ID: 28039323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Competing HIV-1 Splice Donor Sites Uncovers a Tight Cluster of Splicing Regulatory Elements within Exon 2/2b.
    Brillen AL; Walotka L; Hillebrand F; Müller L; Widera M; Theiss S; Schaal H
    J Virol; 2017 Jul; 91(14):. PubMed ID: 28446664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptic splice site usage in exon 7 of the human fibrinogen Bbeta-chain gene is regulated by a naturally silent SF2/ASF binding site within this exon.
    Spena S; Tenchini ML; Buratti E
    RNA; 2006 Jun; 12(6):948-58. PubMed ID: 16611940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput analysis revealed mutations' diverging effects on
    Souček P; Réblová K; Kramárek M; Radová L; Grymová T; Hujová P; Kováčová T; Lexa M; Grodecká L; Freiberger T
    RNA Biol; 2019 Oct; 16(10):1364-1376. PubMed ID: 31213135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended base pair complementarity between U1 snRNA and the 5' splice site does not inhibit splicing in higher eukaryotes, but rather increases 5' splice site recognition.
    Freund M; Hicks MJ; Konermann C; Otte M; Hertel KJ; Schaal H
    Nucleic Acids Res; 2005; 33(16):5112-9. PubMed ID: 16155183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intronic PAH gene mutations cause a splicing defect by a novel mechanism involving U1snRNP binding downstream of the 5' splice site.
    Martínez-Pizarro A; Dembic M; Pérez B; Andresen BS; Desviat LR
    PLoS Genet; 2018 Apr; 14(4):e1007360. PubMed ID: 29684050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach to describe a U1 snRNA binding site.
    Freund M; Asang C; Kammler S; Konermann C; Krummheuer J; Hipp M; Meyer I; Gierling W; Theiss S; Preuss T; Schindler D; Kjems J; Schaal H
    Nucleic Acids Res; 2003 Dec; 31(23):6963-75. PubMed ID: 14627829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirements for gene silencing mediated by U1 snRNA binding to a target sequence.
    Abad X; Vera M; Jung SP; Oswald E; Romero I; Amin V; Fortes P; Gunderson SI
    Nucleic Acids Res; 2008 Apr; 36(7):2338-52. PubMed ID: 18299285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Context matters: Regulation of splice donor usage.
    Ptok J; Müller L; Theiss S; Schaal H
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194391. PubMed ID: 31202784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic strategy to rescue mutation-induced exon skipping in rhodopsin by adaptation of U1 snRNA.
    Tanner G; Glaus E; Barthelmes D; Ader M; Fleischhauer J; Pagani F; Berger W; Neidhardt J
    Hum Mutat; 2009 Feb; 30(2):255-63. PubMed ID: 18837008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.
    Královicová J; Vorechovsky I
    Nucleic Acids Res; 2007; 35(19):6399-413. PubMed ID: 17881373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of modified U1 small nuclear RNA for rescue from exon 7 skipping caused by 5'-splice site mutation of human cathepsin A gene.
    Yamazaki N; Kanazawa K; Kimura M; Ike H; Shinomiya M; Tanaka S; Shinohara Y; Minakawa N; Itoh K; Takiguchi Y
    Gene; 2018 Nov; 677():41-48. PubMed ID: 30010039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. U7 snRNA-mediated correction of aberrant splicing caused by activation of cryptic splice sites.
    Uchikawa H; Fujii K; Kohno Y; Katsumata N; Nagao K; Yamada M; Miyashita T
    J Hum Genet; 2007; 52(11):891-897. PubMed ID: 17851636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions across exons can influence splice site recognition in plant nuclei.
    McCullough AJ; Baynton CE; Schuler MA
    Plant Cell; 1996 Dec; 8(12):2295-307. PubMed ID: 8989884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional studies on the ATM intronic splicing processing element.
    Lewandowska MA; Stuani C; Parvizpur A; Baralle FE; Pagani F
    Nucleic Acids Res; 2005; 33(13):4007-15. PubMed ID: 16030351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic HEXploring allows landscaping of novel potential splicing regulatory elements.
    Erkelenz S; Theiss S; Otte M; Widera M; Peter JO; Schaal H
    Nucleic Acids Res; 2014; 42(16):10681-97. PubMed ID: 25147205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene.
    Singh NN; Del Rio-Malewski JB; Luo D; Ottesen EW; Howell MD; Singh RN
    Nucleic Acids Res; 2017 Dec; 45(21):12214-12240. PubMed ID: 28981879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of disease-associated mutations affecting an exonic splicing enhancer and two cryptic splice sites in exon 13 of the cystic fibrosis transmembrane conductance regulator gene.
    Aznarez I; Chan EM; Zielenski J; Blencowe BJ; Tsui LC
    Hum Mol Genet; 2003 Aug; 12(16):2031-40. PubMed ID: 12913074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions.
    Thanaraj TA; Clark F
    Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism for cryptic splice site activation during pre-mRNA splicing.
    Nelson KK; Green MR
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6253-7. PubMed ID: 2143583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.