These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 28039374)

  • 1. Removal of Perineuronal Nets Unlocks Juvenile Plasticity Through Network Mechanisms of Decreased Inhibition and Increased Gamma Activity.
    Lensjø KK; Lepperød ME; Dick G; Hafting T; Fyhn M
    J Neurosci; 2017 Feb; 37(5):1269-1283. PubMed ID: 28039374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perineuronal Nets Regulate the Inhibitory Perisomatic Input onto Parvalbumin Interneurons and γ Activity in the Prefrontal Cortex.
    Carceller H; Guirado R; Ripolles-Campos E; Teruel-Marti V; Nacher J
    J Neurosci; 2020 Jun; 40(26):5008-5018. PubMed ID: 32457072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggrecan Directs Extracellular Matrix-Mediated Neuronal Plasticity.
    Rowlands D; Lensjø KK; Dinh T; Yang S; Andrews MR; Hafting T; Fyhn M; Fawcett JW; Dick G
    J Neurosci; 2018 Nov; 38(47):10102-10113. PubMed ID: 30282728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review.
    Wingert JC; Sorg BA
    Front Synaptic Neurosci; 2021; 13():673210. PubMed ID: 34040511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons.
    Carstens KE; Phillips ML; Pozzo-Miller L; Weinberg RJ; Dudek SM
    J Neurosci; 2016 Jun; 36(23):6312-20. PubMed ID: 27277807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perineuronal nets control visual input via thalamic recruitment of cortical PV interneurons.
    Faini G; Aguirre A; Landi S; Lamers D; Pizzorusso T; Ratto GM; Deleuze C; Bacci A
    Elife; 2018 Dec; 7():. PubMed ID: 30561327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Perineuronal Nets in the Adult Cortex by the Activity of the Cortical Network.
    Devienne G; Picaud S; Cohen I; Piquet J; Tricoire L; Testa D; Di Nardo AA; Rossier J; Cauli B; Lambolez B
    J Neurosci; 2021 Jul; 41(27):5779-5790. PubMed ID: 34045309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex.
    Ye Q; Miao QL
    Matrix Biol; 2013 Aug; 32(6):352-63. PubMed ID: 23597636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perineuronal Nets in the Deep Cerebellar Nuclei Regulate GABAergic Transmission and Delay Eyeblink Conditioning.
    Hirono M; Watanabe S; Karube F; Fujiyama F; Kawahara S; Nagao S; Yanagawa Y; Misonou H
    J Neurosci; 2018 Jul; 38(27):6130-6144. PubMed ID: 29858484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Expression and Cell-Type Specificity of Perineuronal Nets in Hippocampus, Medial Entorhinal Cortex, and Visual Cortex Examined in the Rat and Mouse.
    Lensjø KK; Christensen AC; Tennøe S; Fyhn M; Hafting T
    eNeuro; 2017; 4(3):. PubMed ID: 28593193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perineuronal Nets: Plasticity, Protection, and Therapeutic Potential.
    Reichelt AC; Hare DJ; Bussey TJ; Saksida LM
    Trends Neurosci; 2019 Jul; 42(7):458-470. PubMed ID: 31174916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Semaphorin3A Promotes Ocular Dominance Plasticity in the Adult Rat Visual Cortex.
    Boggio EM; Ehlert EM; Lupori L; Moloney EB; De Winter F; Vander Kooi CW; Baroncelli L; Mecollari V; Blits B; Fawcett JW; Verhaagen J; Pizzorusso T
    Mol Neurobiol; 2019 Sep; 56(9):5987-5997. PubMed ID: 30706367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebellar plasticity and associative memories are controlled by perineuronal nets.
    Carulli D; Broersen R; de Winter F; Muir EM; Mešković M; de Waal M; de Vries S; Boele HJ; Canto CB; De Zeeuw CI; Verhaagen J
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6855-6865. PubMed ID: 32152108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondroitinase and Antidepressants Promote Plasticity by Releasing TRKB from Dephosphorylating Control of PTPσ in Parvalbumin Neurons.
    Lesnikova A; Casarotto PC; Fred SM; Voipio M; Winkel F; Steinzeig A; Antila H; Umemori J; Biojone C; Castrén E
    J Neurosci; 2021 Feb; 41(5):972-980. PubMed ID: 33293360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of perineuronal nets, parvalbumin and protein tyrosine phosphatase σ in the rat visual cortex during development and after BFD.
    Liu H; Xu H; Yu T; Yao J; Zhao C; Yin ZQ
    Curr Eye Res; 2013 Oct; 38(10):1083-94. PubMed ID: 23718120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Venlafaxine stimulates PNN proteolysis and MMP-9-dependent enhancement of gamma power; relevance to antidepressant efficacy.
    Alaiyed S; Bozzelli PL; Caccavano A; Wu JY; Conant K
    J Neurochem; 2019 Mar; 148(6):810-821. PubMed ID: 30697747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateralized Expression of Cortical Perineuronal Nets during Maternal Experience is Dependent on MECP2.
    Lau BYB; Layo DE; Emery B; Everett M; Kumar A; Stevenson P; Reynolds KG; Cherosky A; Bowyer SH; Roth S; Fisher DG; McCord RP; Krishnan K
    eNeuro; 2020; 7(3):. PubMed ID: 32332080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weaving a Net of Neurobiological Mechanisms in Schizophrenia and Unraveling the Underlying Pathophysiology.
    Bitanihirwe BK; Mauney SA; Woo TU
    Biol Psychiatry; 2016 Oct; 80(8):589-98. PubMed ID: 27113498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex.
    Baho E; Chattopadhyaya B; Lavertu-Jolin M; Mazziotti R; Awad PN; Chehrazi P; Groleau M; Jahannault-Talignani C; Vaucher E; Ango F; Pizzorusso T; Baroncelli L; Di Cristo G
    J Neurosci; 2019 Jun; 39(23):4489-4510. PubMed ID: 30936240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preserved excitatory-inhibitory balance of cortical synaptic inputs following deprived eye stimulation after a saturating period of monocular deprivation in rats.
    Iurilli G; Olcese U; Medini P
    PLoS One; 2013; 8(12):e82044. PubMed ID: 24349181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.