BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28039846)

  • 1. Fluorescent fingerprints of edible oils and biodiesel by means total synchronous fluorescence and Tucker3 modeling.
    Insausti M; de Araújo Gomes A; Camiña JM; de Araújo MC; Band BS
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():185-190. PubMed ID: 28039846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction and characterization of triglycerides from coffeeweed and switchgrass seeds as potential feedstocks for biodiesel production.
    Armah-Agyeman G; Gyamerah M; Biney PO; Woldesenbet S
    J Sci Food Agric; 2016 Oct; 96(13):4390-7. PubMed ID: 26805469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence as an analytical tool for assessing the conversion of oil into biodiesel.
    Chimenez TA; Magalhães KF; Caires AR; Oliveira SL
    J Fluoresc; 2012 Jul; 22(4):1177-82. PubMed ID: 22538833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronous fluorescence spectroscopy of edible vegetable oils. Quantification of tocopherols.
    Sikorska E; Gliszczyńska-Swigło A; Khmelinskii I; Sikorski M
    J Agric Food Chem; 2005 Sep; 53(18):6988-94. PubMed ID: 16131100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronous fluorescence spectroscopy: tool for monitoring thermally stressed edible oils.
    Poulli KI; Chantzos NV; Mousdis GA; Georgiou CA
    J Agric Food Chem; 2009 Sep; 57(18):8194-201. PubMed ID: 19722493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier transform infrared spectroscopy (FTIR) and multivariate analysis for identification of different vegetable oils used in biodiesel production.
    Mueller D; Ferrão MF; Marder L; da Costa AB; Schneider Rde C
    Sensors (Basel); 2013 Mar; 13(4):4258-71. PubMed ID: 23539030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening analysis of biodiesel feedstock using UV-vis, NIR and synchronous fluorescence spectrometries and the successive projections algorithm.
    Insausti M; Gomes AA; Cruz FV; Pistonesi MF; Araujo MC; Galvão RK; Pereira CF; Band BS
    Talanta; 2012 Aug; 97():579-83. PubMed ID: 22841125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of fluorescence spectra and parallel factor analysis in the classification of edible vegetable oils].
    Wu XJ; Pan Z; Zhao YP; Liu HL; Zheng LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Aug; 34(8):2137-42. PubMed ID: 25474950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of class membership of biodiesels using chemometrics.
    Mustafa Z; Milina R; Simeonova PA; Tsakovski SL; Simeonov VD
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(1):72-80. PubMed ID: 25438133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total synchronous fluorescence scan spectra of petroleum products.
    Patra D; Mishra AK
    Anal Bioanal Chem; 2002 Jul; 373(4-5):304-9. PubMed ID: 12110984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronous fluorescence spectroscopy for quantitative determination of virgin olive oil adulteration with sunflower oil.
    Poulli KI; Mousdis GA; Georgiou CA
    Anal Bioanal Chem; 2006 Nov; 386(5):1571-5. PubMed ID: 16953317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of French virgin olive oil registered designation of origins predicted by chemometric analysis of synchronous excitation-emission fluorescence spectra.
    Dupuy N; Le Dréau Y; Ollivier D; Artaud J; Pinatel C; Kister J
    J Agric Food Chem; 2005 Nov; 53(24):9361-8. PubMed ID: 16302748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodiesel production from seed oil of Cleome viscosa L.
    Kumari R; Jain VK; Kumar S
    Indian J Exp Biol; 2012 Jul; 50(7):502-10. PubMed ID: 22822531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique.
    Xu J; Liu XF; Wang YT
    Food Chem; 2016 Dec; 212():72-7. PubMed ID: 27374508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review.
    Mazivila SJ
    Talanta; 2018 Apr; 180():239-247. PubMed ID: 29332805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of biodiesel via enzymatic ethanolysis of the sunflower and soybean oils: modeling.
    Pessoa FL; Magalhães SP; Falcão PW
    Appl Biochem Biotechnol; 2010 May; 161(1-8):238-44. PubMed ID: 20033350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.
    Juan JC; Kartika DA; Wu TY; Hin TY
    Bioresour Technol; 2011 Jan; 102(2):452-60. PubMed ID: 21094045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of vegetable oils fatty acid composition on reaction temperature and glycerides conversion to biodiesel during transesterification.
    Pinzi S; Gandía LM; Arzamendi G; Ruiz JJ; Dorado MP
    Bioresour Technol; 2011 Jan; 102(2):1044-50. PubMed ID: 20801017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.
    Brandão LF; Braga JW; Suarez PA
    J Chromatogr A; 2012 Feb; 1225():150-7. PubMed ID: 22257926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the oxidation stability of biodiesel and oils by spectrofluorimetry and multivariate calibration.
    Meira M; Quintella CM; Tanajura Ados S; da Silva HR; Fernando JD; da Costa Neto PR; Pepe IM; Santos MA; Nascimento LL
    Talanta; 2011 Jul; 85(1):430-4. PubMed ID: 21645721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.