These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28039970)

  • 21. Exact results for the Kuramoto model with a bimodal frequency distribution.
    Martens EA; Barreto E; Strogatz SH; Ott E; So P; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026204. PubMed ID: 19391817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental study of synchronization of coupled electrical self-oscillators and comparison to the Sakaguchi-Kuramoto model.
    English LQ; Zeng Z; Mertens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052912. PubMed ID: 26651767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics in the Sakaguchi-Kuramoto model with bimodal frequency distribution.
    Guo S; Xie Y; Dai Q; Li H; Yang J
    PLoS One; 2020; 15(12):e0243196. PubMed ID: 33296390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators.
    Roberts DC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-electron spin qubits.
    Russ M; Burkard G
    J Phys Condens Matter; 2017 Oct; 29(39):393001. PubMed ID: 28562367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multistable states in a system of coupled phase oscillators with inertia.
    Yuan D; Lin F; Wang L; Liu D; Yang J; Xiao Y
    Sci Rep; 2017 Feb; 7():42178. PubMed ID: 28176829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extracting topological features from dynamical measures in networks of Kuramoto oscillators.
    Prignano L; Díaz-Guilera A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036112. PubMed ID: 22587154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kuramoto model with uniformly spaced frequencies: Finite-N asymptotics of the locking threshold.
    Ottino-Löffler B; Strogatz SH
    Phys Rev E; 2016 Jun; 93(6):062220. PubMed ID: 27415267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformists and contrarians in a Kuramoto model with identical natural frequencies.
    Hong H; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046202. PubMed ID: 22181240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasticity and learning in a network of coupled phase oscillators.
    Seliger P; Young SC; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041906. PubMed ID: 12005872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Breathing and switching cyclops states in Kuramoto networks with higher-mode coupling.
    Bolotov MI; Munyayev VO; Smirnov LA; Osipov GV; Belykh I
    Phys Rev E; 2024 May; 109(5-1):054202. PubMed ID: 38907462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aging and clustering in globally coupled oscillators.
    Daido H; Nakanishi K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056206. PubMed ID: 17677147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of long-term average frequencies for Kuramoto oscillator systems.
    Engelbrecht JR; Mirollo R
    Phys Rev Lett; 2012 Jul; 109(3):034103. PubMed ID: 22861856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonuniversal results induced by diversity distribution in coupled excitable systems.
    Lafuerza LF; Colet P; Toral R
    Phys Rev Lett; 2010 Aug; 105(8):084101. PubMed ID: 20868099
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model.
    Omel'chenko OE; Wolfrum M
    Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators.
    Hong H; Strogatz SH
    Phys Rev Lett; 2011 Feb; 106(5):054102. PubMed ID: 21405399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bistability of patterns of synchrony in Kuramoto oscillators with inertia.
    Belykh IV; Brister BN; Belykh VN
    Chaos; 2016 Sep; 26(9):094822. PubMed ID: 27781476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiplicity of singular synchronous states in the Kuramoto model of coupled oscillators.
    Komarov M; Pikovsky A
    Phys Rev Lett; 2013 Nov; 111(20):204101. PubMed ID: 24289688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synchronization of oscillators in a Kuramoto-type model with generic coupling.
    Vlasov V; Macau EE; Pikovsky A
    Chaos; 2014 Jun; 24(2):023120. PubMed ID: 24985434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low dimensional behavior of large systems of globally coupled oscillators.
    Ott E; Antonsen TM
    Chaos; 2008 Sep; 18(3):037113. PubMed ID: 19045487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.