These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 28039982)
1. Symmetry of Lyapunov exponents in bifurcation structures of one-dimensional maps. Shimada Y; Takagi E; Ikeguchi T Chaos; 2016 Dec; 26(12):123119. PubMed ID: 28039982 [TBL] [Abstract][Full Text] [Related]
2. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS. Ott W; Rivas MA; West J J Stat Phys; 2015 Dec; 161(5):1098-1111. PubMed ID: 28066028 [TBL] [Abstract][Full Text] [Related]
3. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Liu HF; Yang YZ; Dai ZH; Yu ZH Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175 [TBL] [Abstract][Full Text] [Related]
4. Lyapunov exponent diagrams of a 4-dimensional Chua system. Stegemann C; Albuquerque HA; Rubinger RM; Rech PC Chaos; 2011 Sep; 21(3):033105. PubMed ID: 21974640 [TBL] [Abstract][Full Text] [Related]
5. Generalized Lyapunov exponent as a unified characterization of dynamical instabilities. Akimoto T; Nakagawa M; Shinkai S; Aizawa Y Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012926. PubMed ID: 25679700 [TBL] [Abstract][Full Text] [Related]
6. Exploring chaos and ergodic behavior of an inductorless circuit driven by stochastic parameters. Seth S; Bera A; Pakrashi V Nonlinear Dyn; 2024; 112(21):19441-19462. PubMed ID: 39219722 [TBL] [Abstract][Full Text] [Related]
7. Alternative Methods of the Largest Lyapunov Exponent Estimation with Applications to the Stability Analyses Based on the Dynamical Maps-Introduction to the Method. Dabrowski A; Sagan T; Denysenko V; Balcerzak M; Zarychta S; Stefanski A Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885352 [TBL] [Abstract][Full Text] [Related]
8. Reconstructing bifurcation diagrams only from time-series data generated by electronic circuits in discrete-time dynamical systems. Itoh Y; Uenohara S; Adachi M; Morie T; Aihara K Chaos; 2020 Jan; 30(1):013128. PubMed ID: 32013489 [TBL] [Abstract][Full Text] [Related]
9. A computational framework for finding parameter sets associated with chaotic dynamics. Koshy-Chenthittayil S; Dimitrova E; Jenkins EW; Dean BC In Silico Biol; 2021; 14(1-2):41-51. PubMed ID: 33896838 [TBL] [Abstract][Full Text] [Related]
11. Cycle-expansion method for the Lyapunov exponent, susceptibility, and higher moments. Charbonneau P; Li YC; Pfister HD; Yaida S Phys Rev E; 2017 Sep; 96(3-1):032129. PubMed ID: 29346975 [TBL] [Abstract][Full Text] [Related]
12. Controlled test for predictive power of Lyapunov exponents: their inability to predict epileptic seizures. Lai YC; Harrison MA; Frei MG; Osorio I Chaos; 2004 Sep; 14(3):630-42. PubMed ID: 15446973 [TBL] [Abstract][Full Text] [Related]
14. Lyapunov exponents in unstable systems. Colonna M; Bonasera A Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):444-8. PubMed ID: 11969780 [TBL] [Abstract][Full Text] [Related]
15. Lyapunov exponents for small aspect ratio Rayleigh-Bénard convection. Scheel JD; Cross MC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066301. PubMed ID: 17280142 [TBL] [Abstract][Full Text] [Related]
16. Zero Lyapunov exponent in the vicinity of the saddle-node bifurcation point in the presence of noise. Hramov AE; Koronovskii AA; Kurovskaya MK Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036212. PubMed ID: 18851126 [TBL] [Abstract][Full Text] [Related]