These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28039990)

  • 1. Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations.
    Pandey V; Holm S
    J Acoust Soc Am; 2016 Dec; 140(6):4225. PubMed ID: 28039990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comments on "On pore fluid viscosity and the wave properties of saturated granular materials including marine sediments" [J. Acoust. Soc. Am. 122, 1486-1501 (2007)].
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2010 Apr; 127(4):2095-8; discussion 2099-102. PubMed ID: 20369987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unifying fractional wave equation for compressional and shear waves.
    Holm S; Sinkus R
    J Acoust Soc Am; 2010 Jan; 127(1):542-59. PubMed ID: 20058999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography.
    Holm S; Näsholm SP
    Ultrasound Med Biol; 2014 Apr; 40(4):695-703. PubMed ID: 24433745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of shear modulus in media with power law characteristics.
    Zhang W; Holm S
    Ultrasonics; 2016 Jan; 64():170-6. PubMed ID: 26385841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments.
    Buckingham MJ
    J Acoust Soc Am; 2007 Sep; 122(3):1486. PubMed ID: 17927409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic wave propagation in gassy porous marine sediments: The rheological and the elastic effects.
    Dogan H; White PR; Leighton TG
    J Acoust Soc Am; 2017 Mar; 141(3):2277. PubMed ID: 28372087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling power law absorption and dispersion in viscoelastic solids using a split-field and the fractional Laplacian.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2014 Oct; 136(4):1499-510. PubMed ID: 25324054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking multiple relaxation, power-law attenuation, and fractional wave equations.
    Näsholm SP; Holm S
    J Acoust Soc Am; 2011 Nov; 130(5):3038-45. PubMed ID: 22087931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation.
    Caputo M; Carcione JM; Cavallini F
    Ultrasound Med Biol; 2011 Jun; 37(6):996-1004. PubMed ID: 21601139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity.
    Pandey V; Holm S
    Phys Rev E; 2016 Sep; 94(3-1):032606. PubMed ID: 27739858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L).
    Prieur F; Vilenskiy G; Holm S
    J Acoust Soc Am; 2012 Oct; 132(4):2169-72. PubMed ID: 23039412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.
    Jiang H; Liu F; Meerschaert MM; McGough RJ
    Electron J Math Anal Appl; 2013 Jan; 1(1):55-66. PubMed ID: 26425384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear acoustic pulse propagation in dispersive sediments using fractional loss operators.
    Maestas JT; Collis JM
    J Acoust Soc Am; 2016 Mar; 139(3):1420-9. PubMed ID: 27036279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractional calculus in bioengineering, part 3.
    Magin RL
    Crit Rev Biomed Eng; 2004; 32(3-4):195-377. PubMed ID: 15651636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian.
    Treeby BE; Cox BT
    J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic properties of uncured resin composites: Dynamic oscillatory shear test and fractional derivative model.
    Petrovic LM; Zorica DM; Stojanac ILj; Krstonosic VS; Hadnadjev MS; Janev MB; Premovic MT; Atanackovic TM
    Dent Mater; 2015 Aug; 31(8):1003-9. PubMed ID: 26076830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersion of interface waves in sediments with power-law shear speed profiles. I. Exact and approximate analytical results.
    Godin OA; Chapman DM
    J Acoust Soc Am; 2001 Oct; 110(4):1890-907. PubMed ID: 11681370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-domain analysis of power law attenuation in space-fractional wave equations.
    Zhao X; McGough RJ
    J Acoust Soc Am; 2018 Jul; 144(1):467. PubMed ID: 30075676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of shear-wave attenuation in unconsolidated sands and glass beads.
    Buckingham MJ
    J Acoust Soc Am; 2014 Nov; 136(5):2478-88. PubMed ID: 25373950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.