BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28040509)

  • 1. Integration of proteomics and metabolomics to elucidate metabolic adaptation in Leishmania.
    Akpunarlieva S; Weidt S; Lamasudin D; Naula C; Henderson D; Barrett M; Burgess K; Burchmore R
    J Proteomics; 2017 Feb; 155():85-98. PubMed ID: 28040509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential quantitative proteomic profiling of Leishmania infantum and Leishmania mexicana density gradient separated membranous fractions.
    Lynn MA; Marr AK; McMaster WR
    J Proteomics; 2013 Apr; 82():179-92. PubMed ID: 23466312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanded Proteomic Survey of the Human Parasite Leishmania major Focusing on Changes in Null Mutants of the Golgi GDP-Mannose/Fucose/Arabinopyranose Transporter
    Polanco G; Scott NE; Lye LF; Beverley SM
    Microbiol Spectr; 2022 Dec; 10(6):e0305222. PubMed ID: 36394313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome changes associated with Leishmania donovani promastigote adaptation to oxidative and nitrosative stresses.
    Sardar AH; Kumar S; Kumar A; Purkait B; Das S; Sen A; Kumar M; Sinha KK; Singh D; Equbal A; Ali V; Das P
    J Proteomics; 2013 Apr; 81():185-99. PubMed ID: 23376486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic characterization of a glucose transporter null mutant in Leishmania mexicana.
    Rodriguez-Contreras D; Feng X; Keeney KM; Bouwer HG; Landfear SM
    Mol Biochem Parasitol; 2007 May; 153(1):9-18. PubMed ID: 17306380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three types of
    Pacakova L; Harant K; Volf P; Lestinova T
    Front Cell Infect Microbiol; 2022; 12():1022448. PubMed ID: 36439224
    [No Abstract]   [Full Text] [Related]  

  • 7. A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts.
    Ishemgulova A; Kraeva N; Hlaváčová J; Zimmer SL; Butenko A; Podešvová L; Leštinová T; Lukeš J; Kostygov A; Votýpka J; Volf P; Yurchenko V
    PLoS Negl Trop Dis; 2017 Jul; 11(7):e0005782. PubMed ID: 28742133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What has proteomics taught us about Leishmania development?
    Tsigankov P; Gherardini PF; Helmer-Citterich M; Zilberstein D
    Parasitology; 2012 Aug; 139(9):1146-57. PubMed ID: 22369930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic changes in glucose transporter-deficient Leishmania mexicana and parasite virulence.
    Rodríguez-Contreras D; Landfear SM
    J Biol Chem; 2006 Jul; 281(29):20068-76. PubMed ID: 16707495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification of an alternate transporter gene suppresses the avirulent phenotype of glucose transporter null mutants in Leishmania mexicana.
    Feng X; Rodriguez-Contreras D; Buffalo C; Bouwer HG; Kruvand E; Beverley SM; Landfear SM
    Mol Microbiol; 2009 Jan; 71(2):369-81. PubMed ID: 19017272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-seq transcriptional profiling of Leishmania amazonensis reveals an arginase-dependent gene expression regulation.
    Aoki JI; Muxel SM; Zampieri RA; Laranjeira-Silva MF; Müller KE; Nerland AH; Floeter-Winter LM
    PLoS Negl Trop Dis; 2017 Oct; 11(10):e0006026. PubMed ID: 29077741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A BONCAT-iTRAQ method enables temporally resolved quantitative profiling of newly synthesised proteins in Leishmania mexicana parasites during starvation.
    Kalesh K; Denny PW
    PLoS Negl Trop Dis; 2019 Dec; 13(12):e0007651. PubMed ID: 31856154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic approaches unravel the intricacy of secreted proteins of Leishmania: An updated review.
    Garg G; Singh K; Ali V
    Biochim Biophys Acta Proteins Proteom; 2018 Aug; 1866(8):913-923. PubMed ID: 29807137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach.
    Liu D; Ford KL; Roessner U; Natera S; Cassin AM; Patterson JH; Bacic A
    Proteomics; 2013 Jun; 13(12-13):2046-62. PubMed ID: 23661342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping Alterations Induced by Long-Term Axenic Cultivation of
    Crepaldi F; de Toledo JS; do Carmo AO; Ferreira Marques Machado L; de Brito DDV; Serufo AV; Almeida APM; de Oliveira LG; Ricotta TQN; Moreira DS; Murta SMF; Diniz AB; Menezes GB; López-Gonzálvez Á; Barbas C; Fernandes AP
    Front Cell Infect Microbiol; 2019; 9():403. PubMed ID: 31867285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics advances in the study of Leishmania parasites and leishmaniasis.
    de Jesus JB; Mesquita-Rodrigues C; Cuervo P
    Subcell Biochem; 2014; 74():323-49. PubMed ID: 24264252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remodeling of protein and mRNA expression in Leishmania mexicana induced by deletion of glucose transporter genes.
    Feng X; Feistel T; Buffalo C; McCormack A; Kruvand E; Rodriguez-Contreras D; Akopyants NS; Umasankar PK; David L; Jardim A; Beverley SM; Landfear SM
    Mol Biochem Parasitol; 2011 Jan; 175(1):39-48. PubMed ID: 20869991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Leishmania parasites through proteomics and implications for the clinic.
    Sundar S; Singh B
    Expert Rev Proteomics; 2018 May; 15(5):371-390. PubMed ID: 29717934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective.
    Subramanian A; Jhawar J; Sarkar RR
    PLoS One; 2015; 10(9):e0137976. PubMed ID: 26367006
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.