These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 28040540)

  • 1. As(III) oxidation by MnO
    Gude JCJ; Rietveld LC; van Halem D
    Water Res; 2017 Mar; 111():41-51. PubMed ID: 28040540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism.
    Cheng Y; Zhang S; Huang T; Li Y
    Water Environ Res; 2019 Jun; 91(6):536-545. PubMed ID: 30667121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of low arsenic concentrations during full-scale aeration and rapid filtration.
    Gude JCJ; Rietveld LC; van Halem D
    Water Res; 2016 Jan; 88():566-574. PubMed ID: 26547752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam.
    Nitzsche KS; Weigold P; Lösekann-Behrens T; Kappler A; Behrens S
    Chemosphere; 2015 Nov; 138():47-59. PubMed ID: 26037816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. As(III) removal in rapid filters: Effect of pH, Fe(II)/Fe(III), filtration velocity and media size.
    Gude JCJ; Rietveld LC; van Halem D
    Water Res; 2018 Dec; 147():342-349. PubMed ID: 30321824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of Fe and Mn bearing precipitates generated by Fe(II) and Mn(II) co-oxidation with O
    Ahmad A; van der Wal A; Bhattacharya P; van Genuchten CM
    Water Res; 2019 Sep; 161():505-516. PubMed ID: 31229731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Groundwater As Removal by As(III), Fe(II), and Mn(II) Co-Oxidation: Contrasting As Removal Pathways with O
    van Genuchten CM; Ahmad A
    Environ Sci Technol; 2020 Dec; 54(23):15454-15464. PubMed ID: 33174730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.
    Wu Y; Li W; Sparks DL
    J Colloid Interface Sci; 2015 Nov; 457():319-28. PubMed ID: 26196715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems.
    Bai Y; Yang T; Liang J; Qu J
    Water Res; 2016 Jul; 98():119-27. PubMed ID: 27088246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of supernatant water level on As removal in biological rapid sand filters.
    Gude JCJ; Joris K; Huysman K; Rietveld LC; van Halem D
    Water Res X; 2018 Dec; 1():100013. PubMed ID: 31193912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobility and redox transformation of arsenic during treatment of artificially recharged groundwater for drinking water production.
    Ahmad A; Heijnen L; de Waal L; Battaglia-Brunet F; Oorthuizen W; Pieterse B; Bhattacharya P; van der Wal A
    Water Res; 2020 Jul; 178():115826. PubMed ID: 32361349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the structure and composition of Fe-Mn binary oxides on rGO on As(III) removal from aquifers.
    Sha T; Hu W; Dong J; Chi Z; Zhao Y; Huang H
    J Environ Sci (China); 2020 Feb; 88():133-144. PubMed ID: 31862055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Iron(II) on Arsenic Sequestration by δ-MnO2: Desorption Studies Using Stirred-Flow Experiments and X-Ray Absorption Fine-Structure Spectroscopy.
    Wu Y; Li W; Sparks DL
    Environ Sci Technol; 2015 Nov; 49(22):13360-8. PubMed ID: 26477604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solutions for an efficient arsenite oxidation and removal from groundwater containing ferrous iron.
    Ying C; Liu C; Zhang F; Zheng L; Wang X; Yin H; Tan W; Feng X; Lanson B
    Water Res; 2023 Sep; 243():120345. PubMed ID: 37516074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimony oxidation and adsorption by in-situ formed biogenic Mn oxide and Fe-Mn oxides.
    Bai Y; Jefferson WA; Liang J; Yang T; Qu J
    J Environ Sci (China); 2017 Apr; 54():126-134. PubMed ID: 28391920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption and desorption of arsenic to ferrihydrite in a sand filter.
    Jessen S; Larsen F; Koch CB; Arvin E
    Environ Sci Technol; 2005 Oct; 39(20):8045-51. PubMed ID: 16295873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO
    Li B; Zhou S; Wei D; Long J; Peng L; Tie B; Williams PN; Lei M
    Sci Total Environ; 2019 Feb; 650(Pt 1):546-556. PubMed ID: 30205344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active MnO
    Cuong DV; Wu PC; Chen LI; Hou CH
    Water Res; 2021 Jan; 188():116495. PubMed ID: 33065416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation.
    Zhang G; Liu F; Liu H; Qu J; Liu R
    Environ Sci Technol; 2014 Sep; 48(17):10316-22. PubMed ID: 25093452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.