These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 28040565)
1. Structure prediction and network analysis of chitinases from the Cape sundew, Drosera capensis. Unhelkar MH; Duong VT; Enendu KN; Kelly JE; Tahir S; Butts CT; Martin RW Biochim Biophys Acta Gen Subj; 2017 Mar; 1861(3):636-643. PubMed ID: 28040565 [TBL] [Abstract][Full Text] [Related]
2. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.). Jopcik M; Moravcikova J; Matusikova I; Bauer M; Rajninec M; Libantova J Planta; 2017 Feb; 245(2):313-327. PubMed ID: 27761648 [TBL] [Abstract][Full Text] [Related]
3. Novel proteases from the genome of the carnivorous plant Drosera capensis: Structural prediction and comparative analysis. Butts CT; Bierma JC; Martin RW Proteins; 2016 Oct; 84(10):1517-33. PubMed ID: 27353064 [TBL] [Abstract][Full Text] [Related]
4. Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.): chitinases in sundew tissues. Libantová J; Kämäräinen T; Moravcíková J; Matusíková I; Salaj J Mol Biol Rep; 2009 May; 36(5):851-6. PubMed ID: 18437530 [TBL] [Abstract][Full Text] [Related]
5. Molecular and functional evolution of class I chitinases for plant carnivory in the caryophyllales. Renner T; Specht CD Mol Biol Evol; 2012 Oct; 29(10):2971-85. PubMed ID: 22490823 [TBL] [Abstract][Full Text] [Related]
6. Expression and Refolding of the Plant Chitinase From Sinelnikov IG; Siedhoff NE; Chulkin AM; Zorov IN; Schwaneberg U; Davari MD; Sinitsyna OA; Shcherbakova LA; Sinitsyn AP; Rozhkova AM Front Bioeng Biotechnol; 2021; 9():728501. PubMed ID: 34621729 [TBL] [Abstract][Full Text] [Related]
7. Sequence comparison, molecular modeling, and network analysis predict structural diversity in cysteine proteases from the Cape sundew, Drosera capensis. Butts CT; Zhang X; Kelly JE; Roskamp KW; Unhelkar MH; Freites JA; Tahir S; Martin RW Comput Struct Biotechnol J; 2016; 14():271-82. PubMed ID: 27471585 [TBL] [Abstract][Full Text] [Related]
8. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Matusíková I; Salaj J; Moravcíková J; Mlynárová L; Nap JP; Libantová J Planta; 2005 Dec; 222(6):1020-7. PubMed ID: 16049675 [TBL] [Abstract][Full Text] [Related]
9. Biochemical and antifungal characteristics of recombinant class I chitinase from Drosera rotundifolia. Rajninec M; Jopcik M; Danchenko M; Libantova J Int J Biol Macromol; 2020 Oct; 161():854-863. PubMed ID: 32553964 [TBL] [Abstract][Full Text] [Related]
10. Expression of Drosera rotundifolia Chitinase in Transgenic Tobacco Plants Enhanced Their Antifungal Potential. Durechova D; Jopcik M; Rajninec M; Moravcikova J; Libantova J Mol Biotechnol; 2019 Dec; 61(12):916-928. PubMed ID: 31555964 [TBL] [Abstract][Full Text] [Related]
11. Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V β-1,3-glucanase. Michalko J; Renner T; Mészáros P; Socha P; Moravčíková J; Blehová A; Libantová J; Polóniová Z; Matušíková I Planta; 2017 Jan; 245(1):77-91. PubMed ID: 27580619 [TBL] [Abstract][Full Text] [Related]
12. A spotlight on prey-induced metabolite dynamics in sundew. A commentary on: 'Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis'. Mithöfer A Ann Bot; 2021 Aug; 128(3):v-vi. PubMed ID: 34302338 [TBL] [Abstract][Full Text] [Related]
13. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis. Hatcher CR; Sommer U; Heaney LM; Millett J Ann Bot; 2021 Aug; 128(3):301-314. PubMed ID: 34077503 [TBL] [Abstract][Full Text] [Related]
14. Protein structure networks provide insight into active site flexibility in esterase/lipases from the carnivorous plant Drosera capensis. Duong VT; Unhelkar MH; Kelly JE; Kim SH; Butts CT; Martin RW Integr Biol (Camb); 2018 Dec; 10(12):768-779. PubMed ID: 30516771 [TBL] [Abstract][Full Text] [Related]
15. Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome. Zhu Q; Deng Y; Vanka P; Brown SJ; Muthukrishnan S; Kramer KJ Bioinformatics; 2004 Jan; 20(2):161-9. PubMed ID: 14734306 [TBL] [Abstract][Full Text] [Related]
16. The Droserasin 1 PSI: A Membrane-Interacting Antimicrobial Peptide from the Carnivorous Plant Sprague-Piercy MA; Bierma JC; Crosby MG; Carpenter BP; Takahashi GR; Paulino J; Hung I; Zhang R; Kelly JE; Kozlyuk N; Chen X; Butts CT; Martin RW Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32709016 [TBL] [Abstract][Full Text] [Related]
17. Wound and insect-induced jasmonate accumulation in carnivorous Drosera capensis: two sides of the same coin. Mithöfer A; Reichelt M; Nakamura Y Plant Biol (Stuttg); 2014 Sep; 16(5):982-7. PubMed ID: 24499476 [TBL] [Abstract][Full Text] [Related]
18. Family 19 chitinases of Streptomyces species: characterization and distribution. Watanabe T; Kanai R; Kawase T; Tanabe T; Mitsutomi M; Sakuda S; Miyashita K Microbiology (Reading); 1999 Dec; 145 ( Pt 12)():3353-3363. PubMed ID: 10627034 [TBL] [Abstract][Full Text] [Related]
19. A carnivorous sundew plant prefers protein over chitin as a source of nitrogen from its traps. Pavlovič A; Krausko M; Adamec L Plant Physiol Biochem; 2016 Jul; 104():11-6. PubMed ID: 26998942 [TBL] [Abstract][Full Text] [Related]
20. Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria. Kawase T; Saito A; Sato T; Kanai R; Fujii T; Nikaidou N; Miyashita K; Watanabe T Appl Environ Microbiol; 2004 Feb; 70(2):1135-44. PubMed ID: 14766598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]