These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28040579)

  • 1. Cathodoluminescence in the scanning transmission electron microscope.
    Kociak M; Zagonel LF
    Ultramicroscopy; 2017 Mar; 174():50-69. PubMed ID: 28040579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cathodoluminescence in the scanning transmission electron microscope.
    Kociak M; Zagonel LF
    Ultramicroscopy; 2017 May; 176():112-131. PubMed ID: 28341557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures.
    Yamamoto N
    Microscopy (Oxf); 2016 Aug; 65(4):282-95. PubMed ID: 27473259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope.
    Hachtel JA; Marvinney C; Mouti A; Mayo D; Mu R; Pennycook SJ; Lupini AR; Chisholm MF; Haglund RF; Pantelides ST
    Nanotechnology; 2016 Apr; 27(15):155202. PubMed ID: 26934391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-Cathodoluminescence Measurement of Asymmetric Carrier Trapping and Radiative Recombination in GaN and InGaN Quantum Disks.
    Deitz JI; Sarwar ATMG; Carnevale SD; Grassman TJ; Myers RC; McComb DW
    Microsc Microanal; 2018 Apr; 24(2):93-98. PubMed ID: 29699596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent light emission in cathodoluminescence when using GaAs in a scanning (transmission) electron microscope.
    Stöger-Pollach M; Pichler CF; Dan T; Zickler GA; Bukvišová K; Eibl O; Brandstätter F
    Ultramicroscopy; 2021 May; 224():113260. PubMed ID: 33774193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Germanium Sulfide Nano-Optics Probed by STEM-Cathodoluminescence Spectroscopy.
    Sutter P; Argyropoulos C; Sutter E
    Nano Lett; 2018 Jul; 18(7):4576-4583. PubMed ID: 29883126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamental Limit of Plasmonic Cathodoluminescence.
    Schmidt FP; Losquin A; Horák M; Hohenester U; Stöger-Pollach M; Krenn JR
    Nano Lett; 2021 Jan; 21(1):590-596. PubMed ID: 33336569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Developments in Cathodoluminescence Spectroscopy for the Study of Luminescent Materials.
    Engelsen DD; Fern GR; Harris PG; Ireland TG; Silver J
    Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements.
    Losquin A; Zagonel LF; Myroshnychenko V; Rodríguez-González B; Tencé M; Scarabelli L; Förstner J; Liz-Marzán LM; García de Abajo FJ; Stéphan O; Kociak M
    Nano Lett; 2015 Feb; 15(2):1229-37. PubMed ID: 25603194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscope.
    Meuret S; Solà Garcia M; Coenen T; Kieft E; Zeijlemaker H; Lätzel M; Christiansen S; Woo SY; Ra YH; Mi Z; Polman A
    Ultramicroscopy; 2019 Feb; 197():28-38. PubMed ID: 30476703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping plasmons at the nanometer scale in an electron microscope.
    Kociak M; Stéphan O
    Chem Soc Rev; 2014 Jun; 43(11):3865-83. PubMed ID: 24604161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping Local Surface Plasmon Modes in a Nanoplasmonic Trimer Using Cathodoluminescence in the Scanning Electron Microscope.
    Liu ACY; Lloyd J; Coenen T; Gómez DE
    Microsc Microanal; 2020 Aug; 26(4):808-813. PubMed ID: 32366354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cathodoluminescence of green fluorescent protein exhibits the redshifted spectrum and the robustness.
    Akiba K; Tamehiro K; Matsui K; Ikegami H; Minoda H
    Sci Rep; 2020 Oct; 10(1):17342. PubMed ID: 33060754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy.
    Furukawa T; Fukushima S; Niioka H; Yamamoto N; Miyake J; Araki T; Hashimoto M
    J Biomed Opt; 2015 May; 20(5):56007. PubMed ID: 26000793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary Electron Imaging of Light at the Nanoscale.
    Cohen M; Abulafia Y; Shavit R; Zalevsky Z
    ACS Nano; 2017 Mar; 11(3):3274-3281. PubMed ID: 28264151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy.
    Moradifar P; Liu Y; Shi J; Siukola Thurston ML; Utzat H; van Driel TB; Lindenberg AM; Dionne JA
    Chem Rev; 2023 Dec; 123(23):12757-12794. PubMed ID: 37979189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the optical properties of dislocations by scanning transmission electron microscopy.
    Pennycook SJ
    Scanning; 2008; 30(4):287-98. PubMed ID: 18613065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused light introduction into transmission electron microscope via parabolic mirror.
    Adachi Y; Yamamoto N; Sannomiya T
    Ultramicroscopy; 2023 Sep; 251():113759. PubMed ID: 37245285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band-gap deformation potential and elasticity limit of semiconductor free-standing nanorods characterized in situ by scanning electron microscope-cathodoluminescence nanospectroscopy.
    Watanabe K; Nagata T; Wakayama Y; Sekiguchi T; Erdélyi R; Volk J
    ACS Nano; 2015 Mar; 9(3):2989-3001. PubMed ID: 25689728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.