These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28040658)

  • 21. Metallobiology of Tuberculosis.
    Marcela Rodriguez G; Neyrolles O
    Microbiol Spectr; 2014 Jun; 2(3):. PubMed ID: 26103977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alzheimer's disease, metal ions and metal homeostatic therapy.
    Zatta P; Drago D; Bolognin S; Sensi SL
    Trends Pharmacol Sci; 2009 Jul; 30(7):346-55. PubMed ID: 19540003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA nuclease activity of Rev-coupled transition metal chelates.
    Joyner JC; Keuper KD; Cowan JA
    Dalton Trans; 2012 Jun; 41(21):6567-78. PubMed ID: 22450234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transition metals and metal complexes in autophagy and diseases.
    Luo Y; Fu Y; Huang Z; Li M
    J Cell Physiol; 2021 Oct; 236(10):7144-7158. PubMed ID: 33694161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altered transition metal homeostasis in mice following manganese injections for manganese-enhanced magnetic resonance imaging.
    Moldovan N; Al-Ebraheem A; Miksys NA; Farquharson MJ; Bock NA
    Biometals; 2013 Feb; 26(1):179-87. PubMed ID: 23334711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal attenuating therapies in neurodegenerative disease.
    Mot AI; Wedd AG; Sinclair L; Brown DR; Collins SJ; Brazier MW
    Expert Rev Neurother; 2011 Dec; 11(12):1717-45. PubMed ID: 22091597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities.
    Bressler JP; Olivi L; Cheong JH; Kim Y; Maerten A; Bannon D
    Hum Exp Toxicol; 2007 Mar; 26(3):221-9. PubMed ID: 17439925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The transition metals copper and iron in neurodegenerative diseases.
    Rivera-Mancía S; Pérez-Neri I; Ríos C; Tristán-López L; Rivera-Espinosa L; Montes S
    Chem Biol Interact; 2010 Jul; 186(2):184-99. PubMed ID: 20399203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescent imaging of transition metal homeostasis using genetically encoded sensors.
    Vinkenborg JL; Koay MS; Merkx M
    Curr Opin Chem Biol; 2010 Apr; 14(2):231-7. PubMed ID: 20036601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting mitochondrial metal dyshomeostasis for the treatment of neurodegeneration.
    Liddell JR
    Neurodegener Dis Manag; 2015 Aug; 5(4):345-64. PubMed ID: 26295717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis.
    Perry RD; Bobrov AG; Fetherston JD
    Metallomics; 2015 Jun; 7(6):965-78. PubMed ID: 25891079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploration of the medical periodic table: towards new targets.
    Barry NP; Sadler PJ
    Chem Commun (Camb); 2013 Jun; 49(45):5106-31. PubMed ID: 23636600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational Design of Silicon-Based Zinc Ionophores.
    Yamada K; Deb A; Shoba VM; Lim D; Maji B; Modell AE; Choudhary A
    Angew Chem Int Ed Engl; 2022 Jun; 61(23):e202201698. PubMed ID: 35385189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of ctr1Δ300, a high-affinity copper transporter with deletion of the cytosolic C-terminus in Saccharomyces cerevisiae under excess copper, leads to disruption of transition metal homeostasis and transcriptional remodelling of cellular processes.
    Schuller A; Auffermann G; Zoschke K; Schmidt U; Ostermann K; Rödel G
    Yeast; 2013 May; 30(5):201-18. PubMed ID: 23576094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prochelator strategies for site-selective activation of metal chelators.
    Oliveri V; Vecchio G
    J Inorg Biochem; 2016 Sep; 162():31-43. PubMed ID: 27297691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracting iron and manganese from bacteria with ionophores - a mechanism against competitors characterized by increased potency in environments low in micronutrients.
    Raatschen N; Wenzel M; Ole Leichert LI; Düchting P; Krämer U; Bandow JE
    Proteomics; 2013 Apr; 13(8):1358-70. PubMed ID: 23412951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans.
    Nies DH
    Metallomics; 2016 May; 8(5):481-507. PubMed ID: 27065183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design, selection, and characterization of thioflavin-based intercalation compounds with metal chelating properties for application in Alzheimer's disease.
    Rodríguez-Rodríguez C; Sánchez de Groot N; Rimola A; Alvarez-Larena A; Lloveras V; Vidal-Gancedo J; Ventura S; Vendrell J; Sodupe M; González-Duarte P
    J Am Chem Soc; 2009 Feb; 131(4):1436-51. PubMed ID: 19133767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disruption of Nap14, a plastid-localized non-intrinsic ABC protein in Arabidopsis thaliana results in the over-accumulation of transition metals and in aberrant chloroplast structures.
    Shimoni-Shor E; Hassidim M; Yuval-Naeh N; Keren N
    Plant Cell Environ; 2010 Jun; 33(6):1029-38. PubMed ID: 20132520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators.
    Tõugu V; Karafin A; Zovo K; Chung RS; Howells C; West AK; Palumaa P
    J Neurochem; 2009 Sep; 110(6):1784-95. PubMed ID: 19619132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.