These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 28040679)
1. Morphological observation, RNA-Seq quantification, and expression profiling: novel insight into grafting-responsive carotenoid biosynthesis in watermelon grafted onto pumpkin rootstock. Liu G; Yang X; Xu J; Zhang M; Hou Q; Zhu L; Huang Y; Xiong A Acta Biochim Biophys Sin (Shanghai); 2017 Mar; 49(3):216-227. PubMed ID: 28040679 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional regulation of lycopene metabolism mediated by rootstock during the ripening of grafted watermelons. Kong Q; Yuan J; Gao L; Liu P; Cao L; Huang Y; Zhao L; Lv H; Bie Z Food Chem; 2017 Jan; 214():406-411. PubMed ID: 27507492 [TBL] [Abstract][Full Text] [Related]
3. Changes in carotenoid profiles and in the expression pattern of the genes in carotenoid metabolisms during fruit development and ripening in four watermelon cultivars. Lv P; Li N; Liu H; Gu H; Zhao WE Food Chem; 2015 May; 174():52-9. PubMed ID: 25529651 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing. Liu N; Yang J; Fu X; Zhang L; Tang K; Guy KM; Hu Z; Guo S; Xu Y; Zhang M Mol Genet Genomics; 2016 Apr; 291(2):621-33. PubMed ID: 26500104 [TBL] [Abstract][Full Text] [Related]
6. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation. Karppinen K; Zoratti L; Sarala M; Carvalho E; Hirsimäki J; Mentula H; Martens S; Häggman H; Jaakola L BMC Plant Biol; 2016 Apr; 16():95. PubMed ID: 27098458 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus). Yuan P; Umer MJ; He N; Zhao S; Lu X; Zhu H; Gong C; Diao W; Gebremeskel H; Kuang H; Liu W BMC Plant Biol; 2021 Apr; 21(1):203. PubMed ID: 33910512 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome changes in reciprocal grafts involving watermelon and bottle gourd reveal molecular mechanisms involved in increase of the fruit size, rind toughness and soluble solids. Garcia-Lozano M; Dutta SK; Natarajan P; Tomason YR; Lopez C; Katam R; Levi A; Nimmakayala P; Reddy UK Plant Mol Biol; 2020 Jan; 102(1-2):213-223. PubMed ID: 31845303 [TBL] [Abstract][Full Text] [Related]
9. Pumpkin rootstock improves the growth and development of watermelon by enhancing uptake and transport of boron and regulating the gene expression. Shireen F; Nawaz MA; Xiong M; Ahmad A; Sohail H; Chen Z; Abouseif Y; Huang Y; Bie Z Plant Physiol Biochem; 2020 Sep; 154():204-218. PubMed ID: 32563044 [TBL] [Abstract][Full Text] [Related]
10. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya. Shen YH; Yang FY; Lu BG; Zhao WW; Jiang T; Feng L; Chen XJ; Ming R BMC Genomics; 2019 Jan; 20(1):49. PubMed ID: 30651061 [TBL] [Abstract][Full Text] [Related]
11. Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development. Guo S; Sun H; Zhang H; Liu J; Ren Y; Gong G; Jiao C; Zheng Y; Yang W; Fei Z; Xu Y PLoS One; 2015; 10(6):e0130267. PubMed ID: 26079257 [TBL] [Abstract][Full Text] [Related]
14. Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development. Hadjipieri M; Georgiadou EC; Marin A; Diaz-Mula HM; Goulas V; Fotopoulos V; Tomás-Barberán FA; Manganaris GA BMC Plant Biol; 2017 Jun; 17(1):102. PubMed ID: 28615062 [TBL] [Abstract][Full Text] [Related]
15. iTRAQ-based quantitative proteomics analysis of cold stress-induced mechanisms in grafted watermelon seedlings. Shi X; Wang X; Cheng F; Cao H; Liang H; Lu J; Kong Q; Bie Z J Proteomics; 2019 Feb; 192():311-320. PubMed ID: 30267873 [TBL] [Abstract][Full Text] [Related]
16. Identification of Appropriate Reference Genes for Normalization of miRNA Expression in Grafted Watermelon Plants under Different Nutrient Stresses. Wu W; Deng Q; Shi P; Yang J; Hu Z; Zhang M PLoS One; 2016; 11(10):e0164725. PubMed ID: 27749935 [TBL] [Abstract][Full Text] [Related]
17. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. Guo S; Liu J; Zheng Y; Huang M; Zhang H; Gong G; He H; Ren Y; Zhong S; Fei Z; Xu Y BMC Genomics; 2011 Sep; 12():454. PubMed ID: 21936920 [TBL] [Abstract][Full Text] [Related]
18. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings. Xu J; Zhang M; Liu G; Yang X; Hou X Plant Physiol Biochem; 2016 Dec; 109():561-570. PubMed ID: 27837724 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening. Zhu Q; Gao P; Liu S; Zhu Z; Amanullah S; Davis AR; Luan F BMC Genomics; 2017 Jan; 18(1):3. PubMed ID: 28049426 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development. Kong Q; Yuan J; Gao L; Zhao L; Cheng F; Huang Y; Bie Z PLoS One; 2015; 10(6):e0130865. PubMed ID: 26110539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]