BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

792 related articles for article (PubMed ID: 28040803)

  • 1. Oncogenic regulation of tumor metabolic reprogramming.
    Tarrado-Castellarnau M; de Atauri P; Cascante M
    Oncotarget; 2016 Sep; 7(38):62726-62753. PubMed ID: 28040803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oncogenes strike a balance between cellular growth and homeostasis.
    Qiu B; Simon MC
    Semin Cell Dev Biol; 2015 Jul; 43():3-10. PubMed ID: 26277544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy.
    Yu L; Chen X; Wang L; Chen S
    Oncotarget; 2016 Jun; 7(25):38908-38926. PubMed ID: 26918353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming.
    Cerella C; Gaigneaux A; Dicato M; Diederich M
    Cancer Lett; 2015 Jan; 356(2 Pt A):251-62. PubMed ID: 24530513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential role of the N-MYC downstream-regulated gene family in reprogramming cancer metabolism under hypoxia.
    Lee GY; Chun YS; Shin HW; Park JW
    Oncotarget; 2016 Aug; 7(35):57442-57451. PubMed ID: 27447861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Type Iγ phosphatidylinositol phosphate kinase promotes tumor growth by facilitating Warburg effect in colorectal cancer.
    Peng W; Huang W; Ge X; Xue L; Zhao W; Xue J
    EBioMedicine; 2019 Jun; 44():375-386. PubMed ID: 31105034
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Tarrado-Castellarnau M; de Atauri P; Tarragó-Celada J; Perarnau J; Yuneva M; Thomson TM; Cascante M
    Mol Syst Biol; 2017 Oct; 13(10):940. PubMed ID: 28978620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells.
    Liu Z; Sun Y; Tan S; Liu L; Hu S; Huo H; Li M; Cui Q; Yu M
    Tumour Biol; 2016 May; 37(5):6661-71. PubMed ID: 26646563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Reprogramming by the PI3K-Akt-mTOR Pathway in Cancer.
    Lien EC; Lyssiotis CA; Cantley LC
    Recent Results Cancer Res; 2016; 207():39-72. PubMed ID: 27557534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cancer metabolism by oncogenes and tumor suppressors.
    Iurlaro R; León-Annicchiarico CL; Muñoz-Pinedo C
    Methods Enzymol; 2014; 542():59-80. PubMed ID: 24862260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene regulatory networking reveals the molecular cue to lysophosphatidic acid-induced metabolic adaptations in ovarian cancer cells.
    Ray U; Roy Chowdhury S; Vasudevan M; Bankar K; Roychoudhury S; Roy SS
    Mol Oncol; 2017 May; 11(5):491-516. PubMed ID: 28236660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PI3K signaling-regulated metabolic reprogramming: From mechanism to application.
    Su WY; Tian LY; Guo LP; Huang LQ; Gao WY
    Biochim Biophys Acta Rev Cancer; 2023 Sep; 1878(5):188952. PubMed ID: 37499988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orexin A affects HepG2 human hepatocellular carcinoma cells glucose metabolism via HIF-1α-dependent and -independent mechanism.
    Wan X; Liu Y; Zhao Y; Sun X; Fan D; Guo L
    PLoS One; 2017; 12(9):e0184213. PubMed ID: 28886081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells.
    Sharma BK; Kolhe R; Black SM; Keller JR; Mivechi NF; Satyanarayana A
    FASEB J; 2016 Jan; 30(1):262-75. PubMed ID: 26330493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MYC and metabolism on the path to cancer.
    Hsieh AL; Walton ZE; Altman BJ; Stine ZE; Dang CV
    Semin Cell Dev Biol; 2015 Jul; 43():11-21. PubMed ID: 26277543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MYC Expression and Metabolic Redox Changes in Cancer Cells: A Synergy Able to Induce Chemoresistance.
    Marengo B; Garbarino O; Speciale A; Monteleone L; Traverso N; Domenicotti C
    Oxid Med Cell Longev; 2019; 2019():7346492. PubMed ID: 31341534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic phenotype of bladder cancer.
    Massari F; Ciccarese C; Santoni M; Iacovelli R; Mazzucchelli R; Piva F; Scarpelli M; Berardi R; Tortora G; Lopez-Beltran A; Cheng L; Montironi R
    Cancer Treat Rev; 2016 Apr; 45():46-57. PubMed ID: 26975021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular determinants of de novo nucleotide biosynthesis in cancer cells.
    Tong X; Zhao F; Thompson CB
    Curr Opin Genet Dev; 2009 Feb; 19(1):32-7. PubMed ID: 19201187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K.
    Courtnay R; Ngo DC; Malik N; Ververis K; Tortorella SM; Karagiannis TC
    Mol Biol Rep; 2015 Apr; 42(4):841-51. PubMed ID: 25689954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDK1 signaling toward PLK1-MYC activation confers oncogenic transformation, tumor-initiating cell activation, and resistance to mTOR-targeted therapy.
    Tan J; Li Z; Lee PL; Guan P; Aau MY; Lee ST; Feng M; Lim CZ; Lee EY; Wee ZN; Lim YC; Karuturi RK; Yu Q
    Cancer Discov; 2013 Oct; 3(10):1156-71. PubMed ID: 23887393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.